- 【深入探索-deepseek】高等数学与AI的因果关系
我的青春不太冷
人工智能机器学习数学
目录数学在AI不同领域的应用区别一、计算机视觉领域1.线性代数2.微积分3.概率论与统计二、自然语言处理领域三、语音识别领域四、数学在AI不同领域应用的逻辑图五、参考资料数学在AI不同领域的应用区别一、计算机视觉领域1.线性代数图像变换:想象我们有一张二维图片,图片里有个点,它的位置用坐标((x,y))表示。现在我们想把这个点绕着图片的原点(就像把纸钉在墙上,以钉子的位置为中心)逆时针旋转一定角度
- 自动驾驶领域成长方案
树上求索
自动驾驶人工智能机器学习
一、学习目标成为自动驾驶领域专家,全面掌握自动驾驶技术体系,能独立进行自动驾驶系统设计、开发与优化,解决实际工程问题。二、成长阶段(一)基础理论奠基期(1-2年)专业知识学习:学习数学(高等数学、线性代数、概率论与数理统计、数值分析等),为理解算法和模型提供数学基础;深入研究自动驾驶涉及的专业课程,如控制理论、传感器原理(激光雷达、摄像头、毫米波雷达等)、机器学习(监督学习、无监督学习、深度学习)
- 凸优化学习
qiaoxinyu10623
凸优化1024程序员节
认为学习凸优化理论比较合适的路径是:学习/复习线性代数和(少量)高等数学的知识。实际上,凸优化理论综合使用了线性代数和微积分的相关知识,比如方向导数,雅克比矩阵,海森矩阵,KKT条件等。这里强烈推荐MIT公开课《线性代数》,GilbertStrang教授主讲,完全不是照本宣科,而是注重几何解释,非常具有启发性,学完之后,你会对线性代数有全新的认识。学习视频:-UP主汉语配音-【线性代数的本质】合集
- 未来是计算机科学的天下,数学——计算机科学及应用未来不可或缺
英伦百宝箱
未来是计算机科学的天下
论文编号:YYSX006论文字数:3935,页数:05数学——计算机科学及应用未来不可或缺[摘要]:自从上世纪七八十年代,计算机科学与技术得到了迅速的发展,但是,世界起初是有了数学以后才出现计算机科学的,它是数学的延续和发展的辅助工具。首先,高等数学是计算机程序设计的奠基石,任何一个计算机程序设计都离不开数学的理论基础;其次,计算机科学的未来发展需要高等数学的辅助,计算机科学的发展过程中所使用的技
- 2022考研数学李永乐复习全书pdf版-基础篇(数一二三通用)
面包资料屋
考研数学
2022考研数学李永乐复习全书pdf版-基础篇(数一二三通用):https://pan.baidu.com/s/1tK9cPPG5Q-xhasqb051ymQ提取码:1111本书是专门为准备参加硕士研究生入学考试提前复习的大二大三学生、在职考研人士及基础薄弱的考生编写。本书以初等数学水平为起点,阐述了考研数学要求的基本知识构架。希望本书能够帮助考生在短时间内厘清考研数学(包括高等数学、线性代数、概
- 极限求解方法小结
垚武田
数学学习
本文总结了同济版《高等数学》第一章中的极限求解的方法。注:下文中的limx\lim\limits_{x}xlim代表对于limx→x0\lim\limits_{x\tox_0}x→x0lim或者limx→∞\lim\limits_{x\to\infty}x→∞lim都成立无穷大与无穷小第4节,定理2:无穷大的倒数为无穷小,即limxf(x)=∞⇒limx1f(x)=0\lim_{x}f(
- 【学习笔记】第三章深度学习基础——Datawhale X李宏毅苹果书 AI夏令营
MoyiTech
人工智能学习笔记
局部极小值与鞍点梯度为0的点我们统称为临界点,包括局部极小值、鞍点等局部极小值和鞍点的梯度都为0,那如何判断呢?先请出我们损失函数:L(θ),θ是模型中的参数的取值,是一个向量。由于网络的复杂性,我们无法直接写出损失函数,不过我们可以写出损失函数的近似取值。根据宋浩老师所讲的大学一年级高等数学的知识,我们可以通过三阶泰勒展开对损失函数在θ附近的取值进行近似:其中,θ是模型中的参数的取值,θ’是在θ
- 终于做了一个决定
不吃老鼠的喵
终于做了一个决定,让自己再求学路上再走远一些,然而没有赶告诉身边任何人,一个人默默的进行,怕被嘲笑,怕考不上。然而当我翻开高数习题的时候,还是一脸懵逼了,高等数学,线性代数。指数函数,无界函数都是几个鬼,仿佛没读过大学一样从新开始。开始信心满满的,看到这个立马被憋回去了。高数不行,就从英语开始,入学测试磕磕绊绊的做完了,也不知道能得多少分,还好身在企业的我这些年没把英语荒废了。接下来就是政治和专业
- 高等数学精解【12】
未来之蓝
基础数学与应用数学线性代数数值优化数据压缩高等数学算法
文章目录无损压缩算法常见算法概述1.**霍夫曼编码(HuffmanCoding)**2.**Lempel-Ziv-Welch(LZW)**3.**游程编码(Run-LengthEncoding,RLE)**4.**算术编码(ArithmeticCoding)**5.**DEFLATE**6.转换编码(TransformCoding)7.预测编码(PredictiveCoding)转换编码的无损压缩
- 2019-03-20记录及学习计划更正
逆风飞翔的鸟
今天早晨早早的就坐上了返回学校的高铁,自己复习的进度稍慢了一些,不过没关系,这几天再追回来,最近发现虽然自己数学的做题能力有所提升,但是熟练程度还差很多,所以接下来高等数学要多做题,线性代数基础已经复习完毕,不能丢下,每天要做一定量的练习来保持住自己的水平。概率论与数理统计自己感觉有些困难,需要从课本开始认真的复习。关于英语我已经用百词斩背了有400左右的单词了,但是不是很扎实,所以自己要提升自己
- 如何理解三大微分中值定理
感知gcs
算法
文章看原文,自己写的只是备份高等数学强化2:一元函数微分学中值定理极值点拐点_一元函数中值定理-CSDN博客高等数学强化3:一元函数积分学P积分-CSDN博客高等数学强化3:定积分几何应用-CSDN博客
- 育儿|博士“虎爸”逼8岁儿学高数 母亲申请人身保护令
SHIAN孖
近日一则新闻火了,的确让人很上火:博士毕业的毛某经常向8岁儿子、5岁女儿教授中学、大学的知识,让两孩子学习文言文和高等数学,并要求两子女学习至深夜,其在教育子女学习的过程中经常使用侮辱性字眼进行谩骂,有时甚至出现殴打行为。在众人的协调下,毛某认为其管教孩子仅为“家务事”,拒绝协调。因子女的教育问题,亦严重影响了夫妻感情。最终对薄公堂,法院作出裁定:禁止父亲毛某对郑某、小明、小佳及其相关近亲属实施家
- Python在高等数学和线性代数中的应用
学习不止,掉发不停
数学建模python
Python数学实验与建模学习目录1.SymPy工具库1.1符号运算基础1.2用SymPy做符号函数画图2.高等数学的符号解2.1极限2.2导数2.3级数求和2.4泰勒展开2.5不定积分和定积分2.6代数方程2.7微分方程3.高等数学问题的数值解3.1一重积分3.1.1梯形计算3.1.2辛普森计算3.2多重积分3.3非线性方程数值解3.3.1二分法求根3.3.2牛顿迭代法求根3.3.3scipy工
- 【微积分/高等数学】无穷级数 之 和函数的快速求法(九阴真经)
啵啵啵啵哲
高等数学笔记其他经验分享
本笔记资料中的方法是考研数学王谱老师的“九阴真经”,对于求和函数的题可快速解决.现将笔记分享出来,也方便自己翻阅笔记.前言此类题目的出题方式一般为给出无穷级数,要求写出和函数及收敛域.本笔记中的方法是先记住常用的九个无穷级数(不妨称其为“标准型”),对于具体题目,可先将原级数进行因式分解等操作,然后化作九种标准型的和、差即可快速写出和函数.对于收敛域的求法,则可根据阿贝尔判别法求出收敛区间,再对区
- 多看书一定是好事吗?我觉得未必,关键在于你
上善若水游戏人生
说到看书学习,大家第一印象就是博览群书的人,一定是很了不起。的确了不起的人绝大多都是博览群书,但是博览群书的人未必就了不起。我觉得我们无论处在哪个阶段,所处的环境如何,或者说所在某一个时空,都需要满足天时地利人和三才,方能圆满。比如小学时期,你就让小朋友努力去学高等数学,或者对小朋友的期许过高,让他们完成这个年龄段几乎不可能完成的事情。那不是帮他,而是在害他。我知道同学,他从小就不断学各种各样的知
- 【深度学习】前向传播和反向传播(四)
Florrie Zhu
深度学习之基础知识深度学习神经网络反向传播前向传播
文章目录前向传播反向传播总结写在最前面的话:今天要梳理的知识点是深度学习中的前/反向传播的计算,所需要的知识点涉及高等数学中的导数运算。在深度学习中,一个神经网络其实就是多个复合函数组成。函数的本质就是将输入x映射到输出y中,即f(x)=yf(x)=yf(x)=y,而函数中的系数就是我们通过训练确定下来的,那么如何训练这些函数从而确定参数呢?这就涉及网络中的两个计算:前向传播和反向传播。前向传播前
- 又断了一天
静竟
2019.3.5星期二了,离考试时间越来越近有一点担忧虽说是通过性考试但总想努力做到最好比较担心科目三,毕竟是高等数学和线性代数只能说加油!今天要换一个发型,换一个心情微笑着面对总有拨开云雾见青天的时候所以过好当下吧
- 高等数学基础
Geniusvisionary
学习方法
高等数学预备知识一、函数的概念与特性1.函数的定义2.反函数的定义2.1反函数的充分条件3.复合函数的定义3.1复合函数的求导4.函数的4中特性4.1有界性4.2单调性4.3奇偶性4.3.1对称性4.4周期性二、函数的图像1.直角坐标系1.1基本初等函数与初等函数1.2分段函数1.3图像变换2.极坐标系2.1描点法画图2.2用直角系观点画极坐标系的图像3.参数法三、常用基础知识1.数列2.三角函数
- Pytorch 复习总结 1
ScienceLi1125
pythonpytorchpython
Pytorch复习总结,仅供笔者使用,参考教材:《动手学深度学习》本文主要内容为:Pytorch张量的常见运算、线性代数、高等数学、概率论。Pytorch张量的常见运算、线性代数、高等数学、概率论部分见Pytorch复习总结1;Pytorch线性神经网络部分见Pytorch复习总结2;Pytorch多层感知机部分见Pytorch复习总结3;Pytorch深度学习计算部分见Pytorch复习总结4;
- 每日复盘总结day 27
文章正在刷新中
备考科目:英语、高等数学、政治、电子技术倒计时:47天一、我今天的计划是(做了什么)?(1)上午:看新闻时事(2)下午:数学中值定理(3)晚上:读了一篇外刊,然后看40min小视频,接着看电子技术基础视频二、我今天没做好什么?(1)不规则动词还没背,等等睡前复习(2)英语作文还没有看三、我今天有哪些收获?我今天有哪些想法?我是一个比较容易受外界影响的,有时看到身边的人伤心哭了,我也会心情被影响的,
- 神经网络(Nature Network)
栉风沐雪
深度学习神经网络人工智能深度学习
最近接触目标检测较多,再此对最基本的神经网络知识进行补充,本博客适合想入门人工智能、其含有线性代数及高等数学基础的人群观看1.构成由输入层、隐藏层、输出层、激活函数、损失函数组成。输入层:接收原始数据隐藏层:进行特征提取和转换输出层:输出预测结果激活函数:非线性变换损失函数:衡量模型预测结果与真实值之间的差距2.正向传播过程基础的神经网络如下图所示,其中层1为输入层,层2为隐藏层,层3为输出层:每
- 高等数学第一章函数与极限03
考研数学吧
高等数学第一章函数与极限03“如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。”----高斯
- UnicodeDecodeError: ‘gbk‘ codec can‘t decode byte 0xa6 in position 34: illegal multibyte sequence
何为xl
python乱码pythongbk
python读取TXT文件时出现错误withopen(r'高等数学.txt')asfile_object:contents=file_object.read()print(contents)报错:原因:Unicode的解码(Decode)出现错误(Error)了,以gbk编码的方式去解码(该字符串变成Unicode),但是此处通过gbk的方式,却无法解码(can’tdecode)。“illegal
- 2020年考研数学(二)网授精讲班
出牛不惜
课程学时:65活动学资学习网时间11月11日止,考研资料低至几元,http://xzw.100xuexi.com视频数量:68下载次数:593播放次数:15437更新时间:2019.10.09【网授课程】1.同济大学《高等数学》网授精讲班第一章函数与极限(1)01:07:28第一章函数与极限(2)00:53:21第一章函数与极限(3)00:39:40第一章函数与极限(4)00:41:49第一章函数
- 阿诺尔德论数学教育
高梵1991
从分析的角度而言,从牛顿、莱布尼兹的时代开始,物理与数学就是紧密结合的;普通人眼中的数学,大概也由于微积分的普及特别是被冠以高等数学的名字,成了微积分的代名词;另一方面,分析的种种分支,也表现出极强的生命力,成为数学中极其重要的一大部分。阿诺尔德的观点我觉得要这么理解:数学不应该与物理造成那么深的隔阂。这是很有道理的。作为数学,我们应该知道东西是怎么来的,它的原来的问题是什么样的,虽然从数学来讲它
- 最早玩双十一的那批人,才是薅羊毛大赛的冠军
二叁叁叁
“你昨晚花了多少钱?”“花到没钱。”双十一早就不是以前单纯善良的双十一了,想要搞懂它,不会点pua社会学高等数学心理学经济学,今年都入不了门。从昨晚,你就应该知道,这不是一场简单的战争——院办的狗友从早上开始打开excel,列满自己要买的东西,啥时候领啥红包,怎样才能凑够满减,还有一列是跟京东比比领完各种优惠券以后谁便宜——虽然是简单的加减乘除但算起来不比求导函数简单但今天付了钱以后发现,还是比别
- 2020-03-01
joker_luo
考研复习大纲数学三月~六月初(一轮复习)复习目标:过一遍考研数学一的全部内容(包括高等数学上,下,概率论,线性代表)。复习用书:李永乐复习全书,汤家凤1800题。时间安排:4.10左右结束高数5.10左右结束线性代数6月初结束概率论复习计划:复习以复习用书,课本为主,复习视频为辅助(原则上以1.25倍观看且每天视频时间不能超过2小时)。主要通过观看视频理解基本概念,结合全书以及基础题加深理解。六月
- 【GAMES101】Lecture 16 蒙特卡洛积分
MaolinYe(叶茂林)
GAMES101图形渲染games101
为了后面要讲的路径追踪,需要讲一下这个蒙特卡洛积分,同时需要回顾一下高等数学中的微积分和概率论与统计学的知识目录微积分概念论与统计蒙特卡洛积分微积分定积分是微积分中的一种重要概念,用于计算函数在一个区间上的总体积、总面积或总量,对于一个实函数f(x),定积分可以表示为∫[a,b]f(x)dx,其中[a,b]是积分区间,f(x)是被积函数,dx表示与自变量x相关的微小增量不定积分是微积分中的一种概念
- 数学与计算机(1)- 高等数学
astuv
pythonmatlabmatplotlibnumpyscipy
(原文:https://blog.iyatt.com/?p=12906)1工具1.1Python基础工具Python3.11.2数学模块SymPy1.12SciPy1.11.4NumPy1.26.3ScientificPython(SciPy)是一个基于NumPy的数值计算库,而SymbolicPython(SymPy)是一个符号计算库。交互工具JupyterNotebook7.0.6JN具有笔记
- 每日一记(95)忽略也是一种智慧
相信未来_3257
美国社会学家威廉姆•詹姆士说:“智慧就是懂得该忽略什么的技巧”。读到这句话的时候,我的内心为之一颤。是呀,一个智慧的老师该忽略掉某些事情。忽略一些不影响正常上课的行为小A是个学习成绩很优秀的孩子,但是他有一个不好的习惯,就是上课喜欢偷看课外书。她学了很多知识,虽然才六年级,但是她会背初中所有古诗文,懂得高等数学,还通晓历史知识。课堂上老师讲解的知识点她已经掌握了,这时,我就不会再勉强她,只要不发出
- 解线性方程组
qiuwanchi
package gaodai.matrix;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
public class Test {
public static void main(String[] args) {
Scanner scanner = new Sc
- 在mysql内部存储代码
annan211
性能mysql存储过程触发器
在mysql内部存储代码
在mysql内部存储代码,既有优点也有缺点,而且有人倡导有人反对。
先看优点:
1 她在服务器内部执行,离数据最近,另外在服务器上执行还可以节省带宽和网络延迟。
2 这是一种代码重用。可以方便的统一业务规则,保证某些行为的一致性,所以也可以提供一定的安全性。
3 可以简化代码的维护和版本更新。
4 可以帮助提升安全,比如提供更细
- Android使用Asynchronous Http Client完成登录保存cookie的问题
hotsunshine
android
Asynchronous Http Client是android中非常好的异步请求工具
除了异步之外还有很多封装比如json的处理,cookie的处理
引用
Persistent Cookie Storage with PersistentCookieStore
This library also includes a PersistentCookieStore whi
- java面试题
Array_06
java面试
java面试题
第一,谈谈final, finally, finalize的区别。
final-修饰符(关键字)如果一个类被声明为final,意味着它不能再派生出新的子类,不能作为父类被继承。因此一个类不能既被声明为 abstract的,又被声明为final的。将变量或方法声明为final,可以保证它们在使用中不被改变。被声明为final的变量必须在声明时给定初值,而在以后的引用中只能
- 网站加速
oloz
网站加速
前序:本人菜鸟,此文研究总结来源于互联网上的资料,大牛请勿喷!本人虚心学习,多指教.
1、减小网页体积的大小,尽量采用div+css模式,尽量避免复杂的页面结构,能简约就简约。
2、采用Gzip对网页进行压缩;
GZIP最早由Jean-loup Gailly和Mark Adler创建,用于UNⅨ系统的文件压缩。我们在Linux中经常会用到后缀为.gz
- 正确书写单例模式
随意而生
java 设计模式 单例
单例模式算是设计模式中最容易理解,也是最容易手写代码的模式了吧。但是其中的坑却不少,所以也常作为面试题来考。本文主要对几种单例写法的整理,并分析其优缺点。很多都是一些老生常谈的问题,但如果你不知道如何创建一个线程安全的单例,不知道什么是双检锁,那这篇文章可能会帮助到你。
懒汉式,线程不安全
当被问到要实现一个单例模式时,很多人的第一反应是写出如下的代码,包括教科书上也是这样
- 单例模式
香水浓
java
懒汉 调用getInstance方法时实例化
public class Singleton {
private static Singleton instance;
private Singleton() {}
public static synchronized Singleton getInstance() {
if(null == ins
- 安装Apache问题:系统找不到指定的文件 No installed service named "Apache2"
AdyZhang
apachehttp server
安装Apache问题:系统找不到指定的文件 No installed service named "Apache2"
每次到这一步都很小心防它的端口冲突问题,结果,特意留出来的80端口就是不能用,烦。
解决方法确保几处:
1、停止IIS启动
2、把端口80改成其它 (譬如90,800,,,什么数字都好)
3、防火墙(关掉试试)
在运行处输入 cmd 回车,转到apa
- 如何在android 文件选择器中选择多个图片或者视频?
aijuans
android
我的android app有这样的需求,在进行照片和视频上传的时候,需要一次性的从照片/视频库选择多条进行上传
但是android原生态的sdk中,只能一个一个的进行选择和上传。
我想知道是否有其他的android上传库可以解决这个问题,提供一个多选的功能,可以使checkbox之类的,一次选择多个 处理方法
官方的图片选择器(但是不支持所有版本的androi,只支持API Level
- mysql中查询生日提醒的日期相关的sql
baalwolf
mysql
SELECT sysid,user_name,birthday,listid,userhead_50,CONCAT(YEAR(CURDATE()),DATE_FORMAT(birthday,'-%m-%d')),CURDATE(), dayofyear( CONCAT(YEAR(CURDATE()),DATE_FORMAT(birthday,'-%m-%d')))-dayofyear(
- MongoDB索引文件破坏后导致查询错误的问题
BigBird2012
mongodb
问题描述:
MongoDB在非正常情况下关闭时,可能会导致索引文件破坏,造成数据在更新时没有反映到索引上。
解决方案:
使用脚本,重建MongoDB所有表的索引。
var names = db.getCollectionNames();
for( var i in names ){
var name = names[i];
print(name);
- Javascript Promise
bijian1013
JavaScriptPromise
Parse JavaScript SDK现在提供了支持大多数异步方法的兼容jquery的Promises模式,那么这意味着什么呢,读完下文你就了解了。
一.认识Promises
“Promises”代表着在javascript程序里下一个伟大的范式,但是理解他们为什么如此伟大不是件简
- [Zookeeper学习笔记九]Zookeeper源代码分析之Zookeeper构造过程
bit1129
zookeeper
Zookeeper重载了几个构造函数,其中构造者可以提供参数最多,可定制性最多的构造函数是
public ZooKeeper(String connectString, int sessionTimeout, Watcher watcher, long sessionId, byte[] sessionPasswd, boolea
- 【Java命令三】jstack
bit1129
jstack
jstack是用于获得当前运行的Java程序所有的线程的运行情况(thread dump),不同于jmap用于获得memory dump
[hadoop@hadoop sbin]$ jstack
Usage:
jstack [-l] <pid>
(to connect to running process)
jstack -F
- jboss 5.1启停脚本 动静分离部署
ronin47
以前启动jboss,往各种xml配置文件,现只要运行一句脚本即可。start nohup sh /**/run.sh -c servicename -b ip -g clustername -u broatcast jboss.messaging.ServerPeerID=int -Djboss.service.binding.set=p
- UI之如何打磨设计能力?
brotherlamp
UIui教程ui自学ui资料ui视频
在越来越拥挤的初创企业世界里,视觉设计的重要性往往可以与杀手级用户体验比肩。在许多情况下,尤其对于 Web 初创企业而言,这两者都是不可或缺的。前不久我们在《右脑革命:别学编程了,学艺术吧》中也曾发出过重视设计的呼吁。如何才能提高初创企业的设计能力呢?以下是 9 位创始人的体会。
1.找到自己的方式
如果你是设计师,要想提高技能可以去设计博客和展示好设计的网站如D-lists或
- 三色旗算法
bylijinnan
java算法
import java.util.Arrays;
/**
问题:
假设有一条绳子,上面有红、白、蓝三种颜色的旗子,起初绳子上的旗子颜色并没有顺序,
您希望将之分类,并排列为蓝、白、红的顺序,要如何移动次数才会最少,注意您只能在绳
子上进行这个动作,而且一次只能调换两个旗子。
网上的解法大多类似:
在一条绳子上移动,在程式中也就意味只能使用一个阵列,而不使用其它的阵列来
- 警告:No configuration found for the specified action: \'s
chiangfai
configuration
1.index.jsp页面form标签未指定namespace属性。
<!--index.jsp代码-->
<%@taglib prefix="s" uri="/struts-tags"%>
...
<s:form action="submit" method="post"&g
- redis -- hash_max_zipmap_entries设置过大有问题
chenchao051
redishash
使用redis时为了使用hash追求更高的内存使用率,我们一般都用hash结构,并且有时候会把hash_max_zipmap_entries这个值设置的很大,很多资料也推荐设置到1000,默认设置为了512,但是这里有个坑
#define ZIPMAP_BIGLEN 254
#define ZIPMAP_END 255
/* Return th
- select into outfile access deny问题
daizj
mysqltxt导出数据到文件
本文转自:http://hatemysql.com/2010/06/29/select-into-outfile-access-deny%E9%97%AE%E9%A2%98/
为应用建立了rnd的帐号,专门为他们查询线上数据库用的,当然,只有他们上了生产网络以后才能连上数据库,安全方面我们还是很注意的,呵呵。
授权的语句如下:
grant select on armory.* to rn
- phpexcel导出excel表简单入门示例
dcj3sjt126com
PHPExcelphpexcel
<?php
error_reporting(E_ALL);
ini_set('display_errors', TRUE);
ini_set('display_startup_errors', TRUE);
if (PHP_SAPI == 'cli')
die('This example should only be run from a Web Brows
- 美国电影超短200句
dcj3sjt126com
电影
1. I see. 我明白了。2. I quit! 我不干了!3. Let go! 放手!4. Me too. 我也是。5. My god! 天哪!6. No way! 不行!7. Come on. 来吧(赶快)8. Hold on. 等一等。9. I agree。 我同意。10. Not bad. 还不错。11. Not yet. 还没。12. See you. 再见。13. Shut up!
- Java访问远程服务
dyy_gusi
httpclientwebservicegetpost
随着webService的崛起,我们开始中会越来越多的使用到访问远程webService服务。当然对于不同的webService框架一般都有自己的client包供使用,但是如果使用webService框架自己的client包,那么必然需要在自己的代码中引入它的包,如果同时调运了多个不同框架的webService,那么就需要同时引入多个不同的clien
- Maven的settings.xml配置
geeksun
settings.xml
settings.xml是Maven的配置文件,下面解释一下其中的配置含义:
settings.xml存在于两个地方:
1.安装的地方:$M2_HOME/conf/settings.xml
2.用户的目录:${user.home}/.m2/settings.xml
前者又被叫做全局配置,后者被称为用户配置。如果两者都存在,它们的内容将被合并,并且用户范围的settings.xml优先。
- ubuntu的init与系统服务设置
hongtoushizi
ubuntu
转载自:
http://iysm.net/?p=178 init
Init是位于/sbin/init的一个程序,它是在linux下,在系统启动过程中,初始化所有的设备驱动程序和数据结构等之后,由内核启动的一个用户级程序,并由此init程序进而完成系统的启动过程。
ubuntu与传统的linux略有不同,使用upstart完成系统的启动,但表面上仍维持init程序的形式。
运行
- 跟我学Nginx+Lua开发目录贴
jinnianshilongnian
nginxlua
使用Nginx+Lua开发近一年的时间,学习和实践了一些Nginx+Lua开发的架构,为了让更多人使用Nginx+Lua架构开发,利用春节期间总结了一份基本的学习教程,希望对大家有用。也欢迎谈探讨学习一些经验。
目录
第一章 安装Nginx+Lua开发环境
第二章 Nginx+Lua开发入门
第三章 Redis/SSDB+Twemproxy安装与使用
第四章 L
- php位运算符注意事项
home198979
位运算PHP&
$a = $b = $c = 0;
$a & $b = 1;
$b | $c = 1
问a,b,c最终为多少?
当看到这题时,我犯了一个低级错误,误 以为位运算符会改变变量的值。所以得出结果是1 1 0
但是位运算符是不会改变变量的值的,例如:
$a=1;$b=2;
$a&$b;
这样a,b的值不会有任何改变
- Linux shell数组建立和使用技巧
pda158
linux
1.数组定义 [chengmo@centos5 ~]$ a=(1 2 3 4 5) [chengmo@centos5 ~]$ echo $a 1 一对括号表示是数组,数组元素用“空格”符号分割开。
2.数组读取与赋值 得到长度: [chengmo@centos5 ~]$ echo ${#a[@]} 5 用${#数组名[@或
- hotspot源码(JDK7)
ol_beta
javaHotSpotjvm
源码结构图,方便理解:
├─agent Serviceab
- Oracle基本事务和ForAll执行批量DML练习
vipbooks
oraclesql
基本事务的使用:
从账户一的余额中转100到账户二的余额中去,如果账户二不存在或账户一中的余额不足100则整笔交易回滚
select * from account;
-- 创建一张账户表
create table account(
-- 账户ID
id number(3) not null,
-- 账户名称
nam