HashMap1.7和1.8变动比较多。
关于HashMap 1.7的版本,倪升武的博客总结的很好。
这里我主要来介绍一下1.8中的HashMap。由于HashMap源码太长,我只挑选了部分进行分析,如果有没有分析到的重点难点或者大家有疑问的地方,希望大家私信给我,大家共同进步~
在1.7中,HashMap是以“数组+链表”的基本结构来存储key和value构成的Entry单元的。其中链表结构的存在是用来处理hash碰撞的。这种结构有它的优点,比如容易实现等。但是我们可以设想这样一种情况,如果说有成百上千个节点在hash时发生碰撞,存储一个链表中,那么如果要查找其中一个节点,那将不可避免的花费 o(n) 的时间复杂度来进行查找。基于这点,1.8中将HashMap的基本结构进行了改善,其中hashMap的基本结构依然是“数组+链表”,但是当hash碰撞太多以至于链表过长的时候,链表结构将演化成树(具体来说应该是红黑树)的结构。我们都知道,红黑树是二叉查找树平衡形式的一种,因此查找性能较链表来说,有了很大提升。
其次,在1.7中,是使用Entry这个类作为基本存储单元的,在1.8中,可能为了配合红黑树的使用,改进成了Node这个类,当然,差不多只是名字变了而已,类内部实现的形式差别不是很大。
源码中的很多备注写的非常好,这里挑出几个与大家一起学习:
package java.util;
/**
* Hash table based implementation of the Map interface. This
* implementation provides all of the optional map operations, and permits
* null values and the null key. (The HashMap
* class is roughly equivalent to Hashtable, except that it is
* unsynchronized and permits nulls.) This class makes no guarantees as to
* the order of the map; in particular, it does not guarantee that the order
* will remain constant over time.
* HashMap是一个实现Map接口的哈希表,并且实现了map集合的所有操作,允许key和value为null
* 除了线程安全性和null设置方面的不同,HashMap和HashTable大致是相同的。这个类
* 不保证map中的顺序。尤其是,它也不能保证顺序的恒久不变。
* This implementation provides constant-time performance for the basic
* operations (get and put), assuming the hash function
* disperses the elements properly among the buckets. Iteration over
* collection views requires time proportional to the "capacity" of the
* HashMap instance (the number of buckets) plus its size (the number
* of key-value mappings). Thus, it's very important not to set the initial
* capacity too high (or the load factor too low) if iteration performance is
* important.
* 只要hash算法能够将数据散列的足够好,那么get和put这种基本操作的用时是固定的。
* 而集合视图的遍历需要的时间与HashMap实例的大小是成比例的。因此,如果遍历操作
* 非常重要的话,不要讲初始容量设置太大(或者将负载因子设置太低)是很重要的
*/
上面是关于HashMap类源码中的几点说明,本人语言表达能力比较差,以上可能有些翻译的不是很好,大家凑合看吧。
private static final long serialVersionUID = 362498820763181265L;
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16,最小容量:16
static final int MAXIMUM_CAPACITY = 1 << 30;//HashMap的最大容量
/**
* The load factor used when none specified in constructor.
*/
static final float DEFAULT_LOAD_FACTOR = 0.75f;//默认的负载因子
/**
* The bin count threshold for using a tree rather than list for a
* bin. Bins are converted to trees when adding an element to a
* bin with at least this many nodes. The value must be greater
* than 2 and should be at least 8 to mesh with assumptions in
* tree removal about conversion back to plain bins upon
* shrinkage.
*/
//树的门阀值,即当链表的长度超过这个值的时候,进行链表到树结构的转变
static final int TREEIFY_THRESHOLD = 8;
/**
* The bin count threshold for untreeifying a (split) bin during a
* resize operation. Should be less than TREEIFY_THRESHOLD, and at
* most 6 to mesh with shrinkage detection under removal.
*/
//当低于这个值时,树变成链表
static final int UNTREEIFY_THRESHOLD = 6;
/**
* The smallest table capacity for which bins may be treeified.
* (Otherwise the table is resized if too many nodes in a bin.)
* Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
* between resizing and treeification thresholds.
*/
//下面这个值的意义是:位桶(bin)处的数据要采用红黑树结构进行存储时,整个Table的最小容量
static final int MIN_TREEIFY_CAPACITY = 64;
//分配的时候,table的长度总是2的幂
transient Node[] table;
transient Set> entrySet;
transient int size;
/**
* The number of times this HashMap has been structurally modified
* Structural modifications are those that change the number of mappings in
* the HashMap or otherwise modify its internal structure (e.g.,
* rehash). This field is used to make iterators on Collection-views of
* the HashMap fail-fast. (See ConcurrentModificationException).
*/
//这个值用于快速失败机制
transient int modCount;
//门限阀值,计算方法:容量*负载因子
int threshold;
下面我先挑几个比较重要又难以理解的方法源码来说一下:
//返回根据给定的目标容量所计算出来的最接近的2的幂,这有利于改善hash算法
static final int tableSizeFor(int cap) {
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
get()方法:
final Node getNode(int hash, Object key) {
Node[] tab; Node first, e; int n; K k;
//这里可以解释一下为什么要求table的长度为2的幂
//n为2的幂,那么化成二进制就是100...00,减一之后成为0111..11
//对于小于n-1的hash值,索引位置就是hash,大于n-1的就是取模,这样在indexFor()方法里可以提高&运算的速度
//且最后一位为1,这样保证散列的均匀性
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
if ((e = first.next) != null) {
if (first instanceof TreeNode)
return ((TreeNode)first).getTreeNode(hash, key);
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
插入操作:
//进行插入操作,分为三种情况,1.插入位置无数据,直接存入 2.插入位置有数据,但是较少且符合链表结构存储的条件,那么以链表操作存入
//3.插入位置有数据,但是以树结构进行存储,那么以树的相关操作进行存入
//较1.7的put相比,复杂了很多,不过却换取了查找时的性能提升。
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node[] tab; Node p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
e = ((TreeNode)p).putTreeVal(this, tab, hash, key, value);
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
resize()操作:
/**
* Initializes or doubles table size. If null, allocates in
* accord with initial capacity target held in field threshold.
* Otherwise, because we are using power-of-two expansion, the
* elements from each bin must either stay at same index, or move
* with a power of two offset in the new table.
*
* @return the table
*/
/**
*初始化或者将size扩至2倍大小。如果满了,就分配符合初始容量目标下的门阀值
*否则,因为我们是进行2的幂的扩展操作,每个位桶处的数据要么呆在相同的索引处,要么移动
*处,要么移动2的幂的位移量。
*/
final Node[] resize() {
Node[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;//超过1>>30大小,无法扩容只能改变 阈值
return oldTab;
}
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold //门限值*2
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults 初始化操作
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node[] newTab = (Node[])new Node[newCap];//table在这里产生了。
table = newTab;//下面对原table中已存储的数据进行迁移,分树和链表2种情况处理
if (oldTab != null) {
for (int j = 0; j < oldCap; ++j) {
Node e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;//将单节点移动到新位置
else if (e instanceof TreeNode) //下面是分开2种情况操作,一种是发生碰撞的节点以树结构进行存储,另一种是以链表结构存储
((TreeNode)e).split(this, newTab, j, oldCap);//这里是处理树的情况
else { // preserve order 保持顺序
Node loHead = null, loTail = null;
Node hiHead = null, hiTail = null;
Node next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {//根据hash值与oldCap的运算结果,将链表中集结的元素分开
if (loTail == null) //运算结果为0的元素,用lo记录并连接成新的链表
loHead = e;
else
loTail.next = e;
loTail = e;
}
else { //运算结果不为0的数据,
if (hiTail == null) //用li记录
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead; //lo仍然放在“原处”,这个“原处”是根据新的hash值算出来的。
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;//li放在j+oldCap位置
}
}
}
}
}
return newTab;
}
树化操作:
//对链表进行树结构的转化存储
final void treeifyBin(Node[] tab, int hash) {
int n, index; Node e;
if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
resize();
else if ((e = tab[index = (n - 1) & hash]) != null) {
TreeNode hd = null, tl = null;
do {
TreeNode p = replacementTreeNode(e, null);
if (tl == null)
hd = p;
else {
p.prev = tl;
tl.next = p;
}
tl = p;
} while ((e = e.next) != null);
if ((tab[index] = hd) != null)
hd.treeify(tab);
}
}
值得一提的是,在1.8的HashMap中新添了一个内部静态类TreeNode,该类继承了LinkedHashMap.Entry。
1.8的HashMap源码较多,一共有2380行,这里我挑选了几个比较重要的来说了一下,其余的并不是很难理解。
小总结: