神经网络学习-CNN(五)
为什么要用CNN
- 检测上图的鸟嘴,不需要看整张图,只需要看鸟嘴的地方就可以了。
- Subsampling the pixels will not change the object
- 同样的特征会出现在图片的不同区域
CNN的过程
计算过程
卷积
- 做内积
- 同样的特征可以被一个卷积发现
- 只有9个点传递到下一个节点,所以参数少
- 共享了所有的参数,所以参数更少
Max Pooling
Flatten
手写数字识别PyTorch实现
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
import numpy as np
print("PyTorch Version: ",torch.__version__)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 20, 5, 1)
self.conv2 = nn.Conv2d(20, 50, 5, 1)
self.fc1 = nn.Linear(4*4*50, 500)
self.fc2 = nn.Linear(500, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2, 2)
x = x.view(-1, 4*4*50)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x, dim=1)
def train(model, device, train_loader, optimizer, epoch, log_interval=100):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % log_interval == 0:
print("Train Epoch: {} [{}/{} ({:0f}%)]\tLoss: {:.6f}".format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()
))
def test(model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(output, target, reduction='sum').item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
torch.manual_seed(53113)
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
batch_size = test_batch_size = 32
kwargs = {'num_workers': 40, 'pin_memory': True} if use_cuda else {}
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('./mnist_data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('./mnist_data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=test_batch_size, shuffle=True, **kwargs)
lr = 0.01
momentum = 0.5
model = Net().to(device)
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum)
epochs = 2
for epoch in range(1, epochs + 1):
train(model, device, train_loader, optimizer, epoch)
test(model, device, test_loader)
save_model = True
if (save_model):
torch.save(model.state_dict(),"mnist_cnn.pt")