SOLOv2算法解读

论文:SOLOv2: Dynamic, Faster and Stronger

论文链接:https://arxiv.org/abs/2003.10152

代码链接:https://github.com/aim-uofa/AdelaiDet

SOLO算法解读链接:https://blog.csdn.net/qq_41994006/article/details/105170426

创新点

SOLOv2主要有两个创新点:

1、作者更进一步,引入动态机制,动态学习目标分割器的mask head。将mask分支解耦为kernal分支以及mask特征分支,学习卷积核权重。

2、作者提出Matrix NMS,减少前向推理时间。

效果:在单张V100显卡,coco数据集上Res-50-FPN SOLOv2,AP达到38.8%,耗时18FPS。

Dynamic Instance Segmentation

如图2所示,在SOLOv1中,mask分支如2(a)所示,由于参数量较多,而且预测结果存在冗余信息,因此进行解耦如图2(b)所示,但都是从预测结果层面出发。对此作者想到为什么不从卷积核角度出发,由此得到2(c),上面为mask kernal分支,下面为mask特征分支。

SOLOv2算法解读_第1张图片

 对于mask kernal分支,如图2(c)所示,输入特征F为H*W*E,学习动态卷积核G为S*S*D,比如G为1*1*E*S^2或3*3*E*S^2,即为D=E或者D=9E。输入channel为E,输出channel为S^2,S^2表示共有S^2个位置,每个位置对应一个卷积核。因此最多生成S^2个mask,此时意味着,每个位置都出现了目标。作者使用不同大小及channel卷积核,实验效果如表3所示。

SOLOv2算法解读_第2张图片

对于mask特征分支,可以每层FPN都做mask预测,也可以合并为一个统一的mask,经作者实验,后者效果更佳,如图3所示。将FPN的P2到P5层依次经过3×3卷积 + group norm + ReLU + 2个双线性插值,统一到原图的1/4尺寸,再做element-wise summation,经过1 × 1 convolution + group norm + ReLU得到mask的feature map F。

SOLOv2算法解读_第3张图片

mask的feature map F经过学到的卷积核G(i,j),i,j表示网格中位置,得到相应位置的实例分割结果。

推理过程

先得到类别置信度,通过阈值0.1过滤掉低置信度预测结果,而后使用学习到的卷积核对mask特征进行卷积操作,经过sigmoid函数后,使用阈值0.5将预测的soft mask转变为二值图。最后一步进行Matrix NMS。

Matrix NMS

IOU计算公式如式3、衰减因子decay计算如式4所示

SOLOv2算法解读_第4张图片

sj = sj * decayj,sj表示第j个目标的预测得分。

两种简单的衰减函数如式5、6所示,线性以及高斯。

SOLOv2算法解读_第5张图片

 Matrix NMS计算过程如下:

1、选取按照置信度排列的top N个结果,生成N*N的IoU矩阵。对于二值图,通过矩阵运算,高效形成IoU矩阵,因为计算IOU时可直接相乘。

2、在IOU矩阵列上,找到最大的IOU。

3、计算decay。

4、通过decay更新预测得分。

代码如下:

SOLOv2算法解读_第6张图片

实验结果 

实例分割结果如表1所示。

SOLOv2算法解读_第7张图片

目标检测结果如表2所示。 

SOLOv2算法解读_第8张图片

 

你可能感兴趣的:(实例分割,论文详解,深度学习)