caffe中使用crop_size剪裁训练图片


下面以一个简单的例子进行介绍。

layer {
  name: "data"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TRAIN
  }
  transform_param {
    mirror: true
    crop_size: 600
    mean_file: "examples/images/imagenet_mean.binaryproto"
  }
  data_param {
    source: "examples/images/train_lmdb"
    batch_size: 256
    backend: LMDB
  }
}
layer {
  name: "data"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TEST
  }
  transform_param {
    mirror: false
    crop_size: 600
    mean_file: "examples/images/imagenet_mean.binaryproto"
  }
  data_param {
    source: "examples/images/val_lmdb"
    batch_size: 50
    backend: LMDB
  }
}



从上面的 数据层的定义,看得出用了镜像和crop_size,还定义了 mean_file。

利用crop_size这种方式可以剪裁中心关注点和边角特征,mirror可以产生镜像,弥补小数据集的不足.

这里要重点讲一下crop_size在训练层与测试层的区别:

首先我们需要了解mean_file和crop_size没什么大关系。mean_file是根据训练集图片制作出来的,crop_size是对训练集图像进行裁剪,两个都是对原始的训练集图像进行处理。如果原始训练图像的尺寸大小为800*800,crop_size的图片为600*600,则mean_file与crop_size的图片均为800*800的图像集。

在caffe中,如果定义了crop_size,那么在train时会对大于crop_size的图片进行随机裁剪,而在test时只是截取中间部分(详见/caffe/src/caffe/data_transformer.cpp):


//We only do random crop when we do training.
    if (phase_ == TRAIN) {
      h_off = Rand(datum_height - crop_size + 1);
      w_off = Rand(datum_width - crop_size + 1);
    } else {
      h_off = (datum_height - crop_size) / 2;
      w_off = (datum_width - crop_size) / 2;
    }
  }



  • 从上述的代码可以看出,如果我们输入的图片尺寸大于crop_size,那么图片会被裁剪。当 phase 模式为 TRAIN 时,裁剪是随机进行裁剪,而当为TEST 模式时,其裁剪方式则只是裁剪图像的中间区域。


下面是我在网上找到的自己进行图像裁剪的程序:

可对照给出的网址进行详细阅读:http://blog.csdn.net/u011762313/article/details/48343799


我们可以手动将图片裁剪并导入pycaffe中,这样能够提高识别率(pycaffe利用caffemodel进行分类中:进行分类这一步改为如下):


#记录分类概率分布
pridects = np.zeros((1, CLASS_NUM))

# 图片维度(高、宽)
img_shape = np.array(img.shape)
# 裁剪的大小(高、宽)
crop_dims = (32, 96)
crop_dims = np.array(crop_dims)
# 这里使用的图片高度全部固定为32,长度可变,最小为96
# 裁剪起点为0,终点为w_range
w_range = img_shape[1] - crop_dims[1]
# 从左往右剪一遍,再从右往左剪一遍,步长为96/4=24
for k in range(0, w_range + 1, crop_dims[1] / 4) + range(w_range, 1, -crop_dims[1] / 4):
    # 裁剪图片
    crop_img = img[:, k:k + crop_dims[1], :]
    # 数据输入、预处理
    net.blobs['data'].data[...] = transformer.preprocess('data', crop_img)
    # 前向迭代,即分类
    out = net.forward()
    # 每一次分类,概率分布叠加
    pridects += out['prob']

# 取最大的概率分布为最终结果
pridect = pridects.argmax()





  • caffe中提供了过采样的方法(oversample),详见/caffe/python/caffe/io.py,裁剪的是图片中央、4个角以及镜像共10张图片。

注:如果图片过大, 需要适当缩小batch_size的值,否则使用GPU时可能超出其缓存大小而报错

你可能感兴趣的:(caffe中使用crop_size剪裁训练图片)