pagerank原理总结

1.pagerank算法概述

又名网页排名,是Google创始人拉里·佩奇和谢尔盖·布林于1997年构建早期的搜索系统原型时提出的链接分析算法,自从Google在商业上获得空前的成功后,该算法也成为其他搜索引擎和学术界十分关注的计算模型。

核心思想:如果一个网页被很多其他网页所链接,说明它受到普遍的承认和信赖,那么它的排名就越高。

2.pagerank基本思想

如果网页T存在一个指向网页A的连接,则表明T的所有者认为A比较重要,从而把T的一部分重要性得分赋予A。这个重要性得分值为:PR(T)/L(T)

     其中PR(T)为T的PageRank值,L(T)为T的出链数

        则A的PageRank值为一系列类似于T的页面重要性得分值的累加。

        即一个页面的得票数由所有链向它的页面的重要性来决定,到一个页面的超链接相当于对该页投一票。一个页面的PageRank是由所有链向它的页面(链入页面)的重要性经过递归算法得到的。一个有较多链入的页面会有较高的等级,相反如果一个页面没有任何链入页面,那么它没有等级。

3.pagerank算法假设

对于某个互联网网页A来说,该网页PageRank的计算基于以下两个基本假设: 
     数量假设:在Web图模型中,如果一个页面节点接收到的其他网页指向的入链数量越多,那么这个页面越重要。
     质量假设指向页面A的入链质量不同,质量高的页面会通过链接向其他页面传递更多的权重。所以越是质量高的页面指向页面A,则页面A越重要。

4.pagerank算法原理

PageRank的计算充分利用了两个假设:数量假设和质量假设。步骤如下:
      1)在初始阶段:网页通过链接关系构建起Web图,每个页面设置相同的PageRank值,通过若干轮的计算,会得到每个页面所获得的最终PageRank值。随着每一轮的计算进行,网页当前的PageRank值会不断得到更新。

      2)在一轮中更新页面PageRank得分的计算方法:在一轮更新页面PageRank得分的计算中,每个页面将其当前的PageRank值平均分配到本页面包含的出链上,这样每个链接即获得了相应的权值。而每个页面将所有指向本页面的入链所传入的权值求和,即可得到新的PageRank得分。当每个页面都获得了更新后的PageRank值,就完成了一轮PageRank计算。 

5.pagerank公式

1)简单公式:

2)修改后的公式:

  由于存在一些出链为0,也就是那些不链接任何其他网页的网, 也称为孤立网页,使得很多网页能被访问到。因此需要对 PageRank公式进行修正,即在简单公式的基础上增加了阻尼系数(damping factor)q, q一般取值q=0.85。

      其意义是,在任意时刻,用户到达某页面后并继续向后浏览的概率。 1- q= 0.15就是用户停止点击,随机跳到新URL的概率)的算法被用到了所有页面上,估算页面可能被上网者放入书签的概率。

      最后,即所有这些被换算为一个百分比再乘上一个系数q。由于下面的算法,没有页面的PageRank会是0。所以,Google通过数学系统给了每个页面一个最小值。

      

3)更加完整的公式:

 

是被研究的页面,是链入页面的数量,是链出页面的数量,而N是所有页面的数量。

6.pagerank算法优缺点

优点:

        是一个与查询无关的静态算法,所有网页的PageRank值通过离线计算获得;有效减少在线查询时的计算量,极大降低了查询响应时间。

缺点:

       1)人们的查询具有主题特征,PageRank忽略了主题相关性,导致结果的相关性和主题性降低

       2)旧的页面等级会比新页面高。因为即使是非常好的新页面也不会有很多上游链接,除非它是某个站点的子站点。


参考:

http://blog.csdn.net/hguisu/article/details/7996185








你可能感兴趣的:(【面试知识点】)