快速排序算法最详细讲解

想起刚接触C语言时,第一次知道快速排序算法便惊为天人,思路真的好。
当我再次回顾算法时,发现其实不止一种思路,这里详细介绍一种,简单讲下另一种
首先第一种思路:
假设有一个数组 Array【9】=【4,1,3,7,2,5,6,9,,8】
我们想把它按照升序排列
第一步
把第一个数 4 设为比较的基准数 = Reference(参考) = Array【begin】
我们需要把比它小的数都放到前面,比它大的数都放到后面
快速排序算法最详细讲解_第1张图片
第二步
从第二个数开始,逐个与基准数 Reference 进行比较
函数体为QSort (array, begin, end);
假设我们设置 i = 1 = begin + 1 ,j = 8 = end (这里假设元素个数已知)
那么首先 Array【i】= 1 < Array【begin】 = 4,不做交换,i++ (i = 2)
继续比较 Array【i】= 3 < Array【begin】 = 4,不做交换,i++ (i = 3)
接着比较 Array【i】= 7 > Array【begin】 = 4,将 Array【i】与 Array【j】做交换
注意,这步是将比基准数大的元素调至数组后面,此时7和8进行交换
快速排序算法最详细讲解_第2张图片
即数组变成:
快速排序算法最详细讲解_第3张图片
i 不变,j- -(变成i = 3,j = 7)这样下次就是和倒数第二个数交换,因为倒数第一个数已经确定是比基准数4更大的数
接着和基准数比较Array【i】= 8 > Array【begin】 = 4,同上,此时8和9进行交换
快速排序算法最详细讲解_第4张图片
即数组变成:
快速排序算法最详细讲解_第5张图片
i 不变,j- -(变成i = 3,j = 6
如此往复,直到不满足 i < j
最后一次交换为5和2进行交换i不变,j- -,此时 i = 3,j = 3,不满足 i < j 的条件
快速排序算法最详细讲解_第6张图片
此时数组:
快速排序算法最详细讲解_第7张图片
最后需要将基准数调至基准位,即 4 和 Array【i】= 2 进行交换
快速排序算法最详细讲解_第8张图片
此时数组:
快排9
第一次比较结束,此时下标begin = 0,end = 8,i = 3,j = 3
特殊情况:若交换基准数时Array【i】仍大于基准数Array【begin】,如下
快速排序算法最详细讲解_第9张图片
最后一次交换完成后,i == j == 3,然而此时Array【i】== 10 > 基准数 4
那么交换前需要 i - -,以确保基准数前的数均比它小,基准数后的数均比它大

快速排序算法最详细讲解_第10张图片

第三步函数嵌套
可以发现以基准数为分界,整个数组是有一定规律的
快排9
那么把基准数两边的数看做两个新的无序数组(看做两个数组,实际数组并未拆开),同样进行比较,这样一直嵌套最终数组排序完成,到这其实思路已经结束了,想要详细了解过程可以看完,或者自己试试
将 i 作为 前段数组的 end ,j 作为后段数组的 begin
begin 到 i前段j 到 end后段

函数体为:
QSort (array, begin, end);
{

…第二步

QSort (array, begin, i);
QSort (array, j, end);
}

在嵌套函数中重复第二步,设 i = begin + 1 ,j = end
A【4】 = 【2,1,3,4】,基准数Array【begin】 = 2 ,比较前下标 begin = 0 ,end = 3 , i = begin + 1 = 1 ,j = end = 3
实际上进入第一个嵌套后又会有嵌套,所以第二个嵌套永远会在第一个嵌套之后,故下面至以第一个嵌套排序作为例子
进行第二步的排序
按照算法,1不动,3和4进行交换,此时 i = 2,j = 2
A【4】= 【2,1,4,3】,注意,此时出现了上面提到的特殊情况
基准数 Array【begin】= 2 < Array【i】= 4,因此 i- -,再对基准数进行交换(此时为2 与 1 交换)因此
A【4】= 【1,2,4,3】,比较后下标begin = 0,end = 3, i = 1 , j = 2
同样的,以基准数为界再次嵌套,对两数组进行划分
先划分A
QSort (array, begin, i);
QSort (array, j, end);

那么
A1【2】= 【1,2】,下标begin = 0 ,end = 1,i = 1 ,j = 1
无需比较,一开始就不满足 i < j 的条件,基准数交换仍为特殊情况,i- - 后再交换(此时i = 0,所以Array【begin】 == Array【i】,即与自身交换,无改变),结果为
A1【2】=【1,2】,下标begin = 0 ,end = 1,i = 0 ,j = 1
按照顺序,本应该继续拆分排序,但是根据参数,此时
进入QSort (array, begin, i); 因为begin == i,立刻退出
接着进入QSort (array, j, end); 同样因为 j == end,立刻退出
不断退出进入嵌套,比较完成后又退出嵌套,完成排序
嵌套停止的条件是函数的第二、三个参数相等,直观地说就是“拆分”的数组仅有一个数
附代码:

#include
#include

//打印函数
void display(int array[],int maxlen)
{
	int i;

	for(i=0 ; i array[begin])
			{
				swap(&array[i],&array[j]);	//如果该元素大于基准数,则交换位置
				j--;
			}
			else
			{
				i++;	//继续比较
			}
		}
		//跳出后i=j

		if(array[i] >= array[begin])	//特殊情况
		{
			i--;
		}

		swap(&array[begin],&array[i]);	//将基准数换至分界点

		QSort(array,begin,i);	//继续排序,以此类推,直到begin == i,j == end
		QSort(array,j,end);	//或者说直到第二第三两个参数相等
	}
}

//主函数
main()
{
	int array[10];	//数组长度可改变
	int maxlen,i;
	
	printf("Input 10 number:\n");
	for(i=0 ; i<10 ; i++)
	{
		scanf("%d",&array[i]);
	}
	
	maxlen=10;	//快速排序
	QSort(array,0,maxlen-1);

	printf("Positive sequence alignment:\n");
	display(array,maxlen);
}

快速排序算法最详细讲解_第11张图片
第二种思路:
同样的选择第一个数作为基准数,最大的区别是:
同时从第二个数和最后一个数开始向中间遍历
前面找到比基准数大的数后停,后面找到比基准数小的数后停,交换两数
交换完成后继续遍历,直到相遇,同第一种思路,嵌套,退嵌套,直到排序完成,这里不做详细讲解,与第一种思路相差不大。

你可能感兴趣的:(算法讲解)