本博文参考七月在线pytorch课程
1.numpy和pytorch实现梯度下降法
使用numpy实现简单神经网络
import numpy as np
N, D_in, H, D_out = 64, 1000, 100, 10
# 随机创建一些训练数据
x = np.random.randn(N, D_in)
y = np.random.randn(N, D_out)
w1 = np.random.randn(D_in, H)
w2 = np.random.randn(H, D_out)
learning_rate = 1e-6
for it in range(500):
# Forward pass
h = x.dot(w1) # N * H
h_relu = np.maximum(h, 0) # N * H
y_pred = h_relu.dot(w2) # N * D_out
# compute loss
loss = np.square(y_pred - y).sum()
print(it, loss)
# Backward pass
# compute the gradient
grad_y_pred = 2.0 * (y_pred - y)
grad_w2 = h_relu.T.dot(grad_y_pred)
grad_h_relu = grad_y_pred.dot(w2.T)
grad_h = grad_h_relu.copy()
grad_h[h<0] = 0
grad_w1 = x.T.dot(grad_h)
# update weights of w1 and w2
w1 -= learning_rate * grad_w1
w2 -= learning_rate * grad_w2
使用pytorch实现简单神经网络
N, D_in, H, D_out = 64, 1000, 100, 10
# 随机创建一些训练数据
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D_in, H)
w2 = torch.randn(H, D_out)
learning_rate = 1e-6
for it in range(500):
# Forward pass
h = x.mm(w1) # N * H
h_relu = h.clamp(min=0) # N * H
y_pred = h_relu.mm(w2) # N * D_out
# compute loss
loss = (y_pred - y).pow(2).sum().item()
print(it, loss)
# Backward pass
# compute the gradient
grad_y_pred = 2.0 * (y_pred - y)
grad_w2 = h_relu.t().mm(grad_y_pred)
grad_h_relu = grad_y_pred.mm(w2.t())
grad_h = grad_h_relu.clone()
grad_h[h<0] = 0
grad_w1 = x.t().mm(grad_h)
# update weights of w1 and w2
w1 -= learning_rate * grad_w1
w2 -= learning_rate * grad_w2
设定初始值
#numpy
x = np.random.randn(N, D_in)
y = np.random.randn(N, D_out)
w1 = np.random.randn(D_in, H)
w2 = np.random.randn(H, D_out)
#pytorch
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D_in, H)
w2 = torch.randn(H, D_out)