图像处理在医学方面的应用

电子科技大学 格拉斯哥学院 2017级 徐冰砚

浅谈图像处理在医学方面的应用

1、背景:

在上学期的新生研讨课中,曾兵院长介绍了图像处理的相关原理和应用。图像处理(image processing)是一种用计算机对图像进行分析,以达到所需结果的技术。在获得图像之后,需要用专门的设备将其数字化,即通过取样和量化过程将一个以自然形式存在的图像变换为适合计算机处理的数字形式。图像在计算机内部被表示为一个数字矩阵,矩阵中每一元素称为像素。
图像处理有各种应用途径,卫星图像处理、面孔识别特征识别、显微图像处理等等,给我印象最为深刻的是图像处理在医学方面的应用。目前临床广泛使用的医学成像模式主要分为四类:X- 射线成像、核磁共振成像(MRI)、核医学成像(NMI)、超声波成像(Ultrasonic Imaging)。图像分析可以将医学模拟图像转化为数字图像,开展了计算机辅助诊断(computer aided diagnosis)的初步研究,在一定程度上可以辅助医生分析医学图像,从而排除人为主观因素,提高诊断准确性和效率。

2、医学图像处理技术:

(1) 图像分割:
由于人体的组织器官不均匀、器官蠕动等造成医学图像一般具有噪声、病变组织边缘模糊等特点, 医学图像分割技术的目的就是将图像中感兴趣的区域清楚的提取出来, 这样就能为后续的定量、定性分析提供图像基础,同时它也是三维可视化的基础。现在有的图像分割方法有如下几种:基于阈值的分割方法、基于区域的分割方法、基于边缘的分割方法以及基于特定理论的分割方法等。

(2) 图像配准和图像融合:
医学图像配准是指对于一幅医学图像通过一种或一系列的空间变换,使它与另一幅医学图像上的对应点达到空间上的一致。配准的结果应使两幅图像上所有的解剖点,或至少是所有具有诊断意义的点及手术感兴趣的点都达到匹配,配准处理一般可以分为图像变换和图像定位两种。
医学图像在空间域配准之后,就可以进行图像融合,融合图像的创建又分为图像数据的融合与融合图像的显示两部分来完成。图像融合的目的是通过综合处理应用这些成像设备所得信息以获得新的有助于临床诊断的信息。利用可视化软件,对多种模态的图像进行图像融合,可以准确地确定病变体的空间位置、大小、几何形状及它与周围生物组织之间的空间关系,从而及时高效地诊断疾病,也可以用在手术计划的制定、病理变化的跟踪、治疗效果的评价等方面。

(3) 伪彩色处理技术:

伪彩色图像处理技术是将黑白图像经过处理变为彩色图像, 可以充分发挥人眼对彩色的视觉能力, 从而使观察者能从图像中取得更多的信息。经过伪彩色处理技术, 提高了对图像特征的识别。临床研究对CT、MRI、B 超和电镜等图片均进行了伪彩色技术的尝试, 取得了良好的效果, 部分图片经过处理后可以显现隐性病灶。

3、总结:

随着医疗技术的蓬勃发展,对医学图像处理提出的要求也越来越高。医学图像处理技术发展至今,仍然还有很多亟待解决的问题。有效地提高医学图像处理技术的水平、与多学科理论的交叉融合、医务人员和计算机理论技术人员之间的交流就显得越来越重要。总之,医学图像作为现代医疗诊断的重要依据,必将在医药信息研究领域和计算机图像处理领域受到更多的关注。

4、参考文献:
[1]王新成.高级图像处理技术[M].北京:中国科学技术出版社,2001.
[2]丁莹.图像配准技术在医学图像处理中的应用研究[M].长春理工大学,2006.12.
[3]田捷.医学影像处理与分析[M], 电子工业出版社, 2003.
[4]田娅, 饶妮妮, 蒲立新.国内医学图像处理技术的最新动态[J].电子科技大学学报, 2002(5): 485- 489.
图片来源:(https://baike.baidu.com/item/医学图像分析/3939451#2)

你可能感兴趣的:(图像处理在医学方面的应用)