- DSP实验七 综合实验与考查
BeBeter」
DigitalSignalProcessingDSPmatlab
目录一、实验目的二、需验证的理论三、实验内容四、实验指导五、实验设计报告要求六、思考题【实验过程】1、语音采样、时域波形、频域波形2、延时3、混响4、单回声5、多重回声6、无限回声7、全通结构混响器8、IIR低通滤波器处理9、IIR带通滤波器处理10、IIR高通滤波器处理11、FIR高通滤波器处理12、FIR低通滤波器处理13、FIR带通滤波器处理14、加噪声、用FIR低通滤去噪声/用IIR低通滤
- python3.6 split用法_对sklearn的使用之数据集的拆分与训练详解(python3.6)
weixin_39849054
python3.6split用法
研修课上讲了两个例子,融合一下。主要演示大致的过程:导入->拆分->训练->模型报告以及几个重要问题:①标签二值化②网格搜索法调参③k折交叉验证④增加噪声特征(之前涉及)fromsklearnimportdatasets#从cross_validation导入会出现warning,说已弃用fromsklearn.model_selectionimporttrain-test_splitfromsk
- 《探秘鸿蒙Next:非结构化数据处理与模型轻量化的完美适配》
人工智能深度学习
在鸿蒙Next的人工智能应用场景中,处理非结构化数据并使其适配模型轻量化需求是一项关键且具有挑战性的任务。以下是一些有效的方法和策略。数据预处理数据清洗:非结构化数据中往往存在噪声、重复和错误数据。对于文本数据,要去除乱码、特殊字符等;对于图像数据,需处理模糊、损坏的图像。比如在处理鸿蒙Next设备采集的监控图像时,通过OpenCV的HarmonyOS适配库进行图像滤波等操作去除噪声。数据归一化与
- 开源AI图像工具—Stable Diffusion
蚂蚁在飞-
人工智能stablediffusion
StableDiffusion是一种基于深度学习的生成式模型,用于图像生成、图像修复和风格转换等任务。它是由StabilityAI和CompVis团队联合开发的。StableDiffusion在生成高质量图像方面表现出色,并且是开源的,可以自由使用和扩展。StableDiffusion的核心技术1.扩散模型(DiffusionModels):•基于概率生成模型。•从噪声中逐步反向生成清晰的图像。•
- Python BI 数据清洗和整合:提升数据质量的关键步骤
菜狗小测试
Python技术专栏python开发语言
在商业智能(BI)领域,数据是核心资产。然而,原始数据往往存在各种问题,如缺失值、重复数据、数据格式不一致等。数据清洗和整合是将这些原始数据转化为高质量、可用数据的关键过程。在这篇博客中,我们将使用Python来展示如何进行BI数据的清洗和整合,并详细讲解代码。一、数据清洗和整合的重要性在BI项目中,不准确或不一致的数据可能导致错误的分析结果和决策。数据清洗可以去除数据中的噪声和错误,而整合则能将
- 使用过的 DAC 器件使用总结
Major_pro
硬件嵌入式硬件
DAC器件的基本原理DAC的主要任务是将二进制数字信号转换成相应的模拟电压或电流信号。其基本工作原理可以概括为以下步骤:接收数字输入:DAC接收来自数字系统的二进制数字信号。量化处理:根据输入的二进制值,确定对应的模拟输出电平。通常,n位DAC可以表示2^n个不同的离散电平。转换为模拟信号:通过内部的电阻网络或其他方法将量化后的电平转换为模拟电压或电流信号。滤波与输出:为了去除高频噪声和阶梯波效应
- 维度可变的UKF(无迹卡尔曼滤波),附有完整源代码
MATLAB卡尔曼
MATLAB创新性滤波方法matlab开发语言
本文分享的MATLAB代码实现了一个N维状态量的无迹卡尔曼滤波(UKF)算法,用于对动态系统的状态估计。代码的一个显著特点是滤波维度可以自由更改,便于适应不同的应用需求。文章目录代码简短介绍运行结果源代码代码简短介绍主要内容和流程如下:初始化:清空工作区和命令窗口,固定随机数种子以确保结果可重现。定义时间序列和状态维度(dim),可以灵活设置至任意值,以适应特定应用。设置过程和观测噪声的协方差矩阵
- 【机器学习:二十七、决策树集合】
KeyPan
机器学习机器学习决策树人工智能数据挖掘深度学习算法分类
1.决策树集合的概述决策树集合是一种基于多个决策树模型集成的机器学习方法,通过组合多个弱学习器(决策树)形成一个强学习器,显著提升预测性能和泛化能力。核心思想集成学习的核心是通过结合多个模型的优点,降低单个模型的偏差与方差,提高整体的准确性和鲁棒性。决策树集合利用多棵树的组合,减少了单棵树可能出现的过拟合或对噪声的敏感性。主要优势性能提升:在分类和回归任务中通常表现优于单独的决策树。稳定性更强:对
- CS4398 Cirrus Logic的旗舰级音频解码芯片
中国芯xinsousou
CirrusLogic(凌云)音频解码芯片单片机可用性测试
CS4398是一块24Bit/192KHz规格的解码芯片,它具有120分贝以上的讯噪比和动态范围,总谐波失真+噪声低至0.0005%,采用一个高级专用多位Delta-Sigma调制器,并整合了失配噪声整形技术。CS4398是一个完整的立体声24位/192kHz数模系统。该D/A系统包括数字去加重,半dB步长音量控制,ATAPI通道混合,可选的快速和慢速数字插值滤波器,再加上过采样的多位delta-
- 浅谈滤波中Q和R的调整——KF第三篇笔记
MATLAB卡尔曼
卡尔曼专题免费专栏开发语言kalman卡尔曼滤波算法
前段时间收到私信和email,问我关于Q和R怎么取、如何调。前面说过p0和x0怎么找的问题,Q和R怎么找还没有说过,这里就简单探讨一下。Q和R的意义Q值为过程噪声,越小系统越容易收敛,表示对模型预测的值信任度越高;但是太小则容易发散,如果Q为零,那么我们只相信预测值;Q值越大表示对于预测的信任度就越低,而对测量值的信任度就变高;如果Q值无穷大,那么则表示信任测量值。R值为测量噪声。R太大,滤波的响
- 《数据质量:人工智能模型的成败关键》
人工智能深度学习
在当今人工智能飞速发展的时代,数据质量对人工智能模型的影响至关重要,它直接关系到模型的性能、准确性和可靠性。以下是对这一问题的详细探讨。影响模型的准确性数据准确性的作用:准确的数据是模型准确输出的基础。如果数据中存在错误、偏差或噪声,模型就会学习到这些错误信息,从而导致预测结果不准确。例如在医疗诊断模型中,若患者的症状数据记录错误,模型可能会给出错误的诊断建议。数据完整性的影响:不完整的数据会使模
- PSNR、SSIM等图像质量评估指标详解
ballball~~
CVcv图像处理图像质量评估指标
简介:个人学习分享,如有错误,欢迎批评指正。一、PSNR(PeakSignal-to-NoiseRatio)峰值信噪比1.定义PSNR是一种用于衡量两幅图像之间差异的客观指标。它主要用于评估图像压缩、传输或重建算法的效果。PSNR值越高,表示两幅图像越相似,质量损失越小。PSNR基于信号与噪声的概念,其理论基础来自信息论中的信噪比(SNR,Signal-to-NoiseRatio)。PSNR将图像
- 【深度强化学习】DQN:深度Q网络算法——从理论讲解到源码解析
视觉萌新、
深度强化学习深度Q网络DQN
【深度强化学习】DQN:深度Q网络算法——从理论讲解到源码解析介绍常用技巧算法步骤DQN源码实现网络结构训练策略DQN算法进阶双深度Q网络(DoubleDQN)竞争深度Q网络(DuelingDQN)优先级经验回放(PER)噪声网络(noisy)本文图片与源码均来自《EasyRL》:https://github.com/datawhalechina/easy-rl介绍 核心思想:训练动作价值函数Q
- 频域增强通道注意力机制EFCAM模型详解及代码复现
呆头鹅AI工作室
深度学习算法详解及代码复现深度学习人工智能神经网络condapython
背景与动机在深度学习领域,如何有效处理时间序列数据一直是一个重要的研究方向。近年来,频域分析技术在时间序列处理中展现出了巨大潜力,特别是离散余弦变换(DCT)因其能够高效捕捉低频信息并避免高频噪声干扰而受到广泛关注。FECAM模型的开发正是基于这一背景,旨在结合频域分析和通道注意力机制,以提高模型对时间序列数据的特征提取和表示能力。通过这种创新方法,FECAM模型能够更有效地捕捉时间序列中的关键特
- 主动降噪技术:原理、方法与应用的深度解析
Crazy learner
音频基础主动降噪音频语音识别
目录一、主动降噪的原理二、主动降噪的技术分类三、主动降噪中的核心算法四、主动降噪的应用领域五、主动降噪技术的挑战与未来发展六、结论主动降噪(ActiveNoiseCancellation,ANC)是当前音频技术中的重要应用,广泛用于耳机、车辆、工业环境及航空等场景。与被动降噪(通过物理结构隔绝噪音)不同,主动降噪通过电子系统发出与噪声相位相反的声音信号来抵消噪音,从而达到降噪效果。随着电子元件和音
- YOLOv11改进策略【Neck】| TPAMI 2024 FreqFusion 频域感知特征融合模块 解决密集图像预测问题
Limiiiing
YOLOv11改进专栏YOLO深度学习计算机视觉目标检测
一、本文介绍本文主要利用FreqFusion结构改进YOLOv11的目标检测网络模型。FreqFusion结构针对传统特征融合在密集图像预测中存在的问题,创新性地引入自适应低通滤波器生成器、偏移量生成器和自适应高通滤波器生成器。将FreqFusion应用于YOLOv11的改进过程中,能够使模型在处理复杂场景图像时,更精准地聚焦目标物体边界,减少背景噪声干扰,显著强化目标物体边界特征表达,进而提升模
- Python和MATLAB及C++信噪比导图(算法模型)
亚图跨际
算法交叉知识Python视频图像修复模数转换信号链噪音频谱计算量化周期性视觉刺激高斯噪声的矩形脉冲心率失常检测算法
要点视频图像修复模数转换中混合信号链噪音测量频谱计算和量化周期性视觉刺激脑电图高斯噪声的矩形脉冲总谐波失真周期图功率谱密度各种心率失常检测算法胶体悬浮液跟踪检测计算交通监控摄像头图像噪音计算Python信噪比信噪比是科学和工程中使用的一种测量方法,用于比较所需信号水平与背景噪声水平。信噪比定义为信号功率与噪声功率之比,通常以分贝表示。高于1:1(大于0dB)的比率表示信号大于噪声。信噪比是影响处理
- STM32 如何生成随机数
千千道
STM32stm32单片机物联网
目录一、引言二、STM32随机数发生器概述三、工作原理1.噪声源2.线性反馈移位寄存器(LFSR)3.数据寄存器(RNG_DR)4.监控和检测电路:5.控制和状态寄存器6.生成流程四、使用方法1.使能随机数发生器2.读取随机数3.错误处理五、注意事项1.随机数的质量2.安全性3.性能考虑六、总结一、引言在嵌入式系统开发中,随机数的生成常常是一个重要的需求。无论是用于加密、模拟、游戏还是其他需要不确
- 语音识别技术有哪些应用场景?
不想秃头的程序
语音识别人工智能
语音识别技术,作为人工智能领域的重要分支,已经深入到我们日常生活的方方面面。以下是一些常见的应用场景:智能助理智能助理如Siri、GoogleAssistant以及Alexa等,都基于语音识别技术来实现用户交互。用户可以通过语音命令来拨打电话、查询信息、设置提醒等。这些助理软件能够理解多种语言和方言,并能够在复杂的环境噪声中准确识别用户的指令。智能家居在智能家居领域,语音识别被用于控制各种智能设备
- 【无线通信】误差矢量幅度(EVM)
守月满空山雪照窗
无线通信无线通信
误差矢量幅度(ErrorVectorMagnitude,EVM)是一种用来评估数字通信系统中调制质量的重要指标。EVM衡量的是理想信号与实际接收信号之间的差异,通常用来评估调制质量、信号完整性和接收机性能。EVM的定义在一个数字通信系统中,理想情况下接收到的信号应该精确地落在特定的理想星座点上(比如QAM或PSK星座图)。然而,由于各种现实因素,如噪声、失真、非线性效应和相位误差,接收到的信号可能
- 平滑法时间序列模型原理及Python实践
AI智博信息
数据分析与挖掘python人工智能
平滑法时间序列模型原理主要涉及通过一定的算法对时间序列数据进行平滑处理,以消除或减弱数据中的随机波动和噪声,从而揭示出数据中的长期趋势和季节性变化,进而对未来数据进行预测。以下是平滑法时间序列模型的详细原理:一、基本原理平滑法时间序列模型基于对历史数据的平滑处理,通过对数据的平均或加权平均,去除数据中的随机波动,使得时间序列数据更加平滑,便于分析和预测。这种方法能够帮助我们更好地理解数据的长期趋势
- 爱旅行,趁现在
斑马莉莉安
旅行,总是令人期待,因为它让人联想到的是远离早已十分熟悉的环境和那繁重的学习和工作,是对已知的斩断,更是对未知的拥抱,未知总是让人向往。都说人生在世,身体和灵魂至少有一个在路上。我们热爱旅行,因为在旅途中我们可以接触到更多新鲜的人,陌生的环境,体验到之前无法体验到的事,往往正是这份空间的隔离使我们远离了原有生活的“噪声”,使我们重新成为一个鲜活的人。旅途中我们所看见的一切经历的一切都是新鲜的,有趣
- Gyro陀螺仪 > MPU 6000 vs ICM 20689
ABEL in China
DIY之旅单片机嵌入式硬件
目录参考MPU6000和ICM20689对比陀螺仪的选择:采样率与噪声参考Gyro-MPU6000vsICM20689|IntoFPVForumFPVDroneFlightControllerExplained-OscarLiangMPU6000和ICM20689对比两个飞行控制器陀螺仪。分别属于T-Motor和iFlight。T-Motor使用MPU6000陀螺仪,而iFlight使用2xICM
- 数字图像处理(一系列对图像进行处理、分析和改进的技术)
编程日记✧
智能医疗计算机视觉图像处理人工智能
数字图像处理是指对图像进行一系列的数学和算法处理,以增强、分析或理解图像的内容。这些处理包括从基础的像素操作到复杂的高维变换和机器学习模型。1.图像降噪在图像获取和传输过程中,往往会引入噪声。降噪技术用于减少这些噪声,同时尽量保持图像的细节。常见方法有:均值滤波:将像素邻域内的像素值取平均值,从而平滑图像。这种方法简单但可能会模糊边缘。高斯滤波:使用高斯函数为权重对像素进行加权平均,可以更好地平滑
- opencv 梯度幅值_基于OpenCV的图像梯度与边缘检测!
莫仝汉
opencv梯度幅值
严格的说,梯度计算需要求导数。但是图像梯度的计算,是通过计算像素值的差得到梯度的近似值。图像梯度表示的是图像变化的速度,反映了图像的边缘信息。边缘是像素值快速变化的地方。所以对于图像的边缘部分,其灰度值变化较大,梯度值也较大;对于图像中较平滑的部分,其灰度值变化较小,梯度值也较小。为了检测边缘,我们需要检测图像中的不连续性,可以使用图像梯度来检测不连续性。但是,图像梯度也会受到噪声的影响,因此建议
- 基于深度学习的信号滤波:创新技术与应用挑战
逼子歌
深度学习神经网络信号滤波图像去噪卷积神经网络长短期记忆网络
一、引言1.1研究背景随着科技的不断发展,信号处理领域面临着越来越复杂的挑战。在众多信号处理技术中,基于深度学习的信号滤波技术逐渐崭露头角,成为研究的热点。基于深度学习的信号滤波在信号处理领域具有至关重要的地位。如今,我们生活在一个数据爆炸的时代,各种信号源不断产生大量的复杂数据。例如,在通信领域,信号常常受到噪声干扰,传统的滤波方法在处理复杂、非线性信号时可能效果不佳。而深度学习技术具有自动特征
- 计算SNR
薛定谔的猫_大雪
人工智能
importcv2importnumpyasnpdefcalculate_snr(image):#读取图像img=cv2.imread(image,cv2.IMREAD_GRAYSCALE)#计算信号功率signal_power=np.mean(img)**2#计算噪声功率noise=img-np.mean(img)noise_power=np.mean(noise**2)#计算信噪比(SNR)s
- 第三章-数据预处理
moke冲冲
数据预处理的主要内容包括数据清洗、数据集成、数据变换和数据规约。3.1数据清洗数据清洗主要是删除原始数据集中的无关数据,重复数据,平滑噪声数据,筛选掉与挖掘主题无关的数据,处理缺失值,异常值等。3.1.1缺失值处理处理缺失值的方法可分为三类:删除记录、数据插补和不处理常用的插补方法如下图插值法:拉格朗日插值法,牛顿插值法拉格朗日插值法详解:https://www.zhihu.com/questio
- 2-85 基于matlab的FrFT下时变幅度LFM信号参数估计
'Matlab学习与应用
matlab工程应用matlab人工智能算法一维插值峰值搜索方式二维峰值搜索算法下时变幅度LFM信号参数估计FrFT
基于matlab的FrFT下时变幅度LFM信号参数估计,输入高斯白噪声LFM信号(信噪比可定义),采用二维峰值搜索算法及一维插值峰值搜索方式提供计算速度,输出LFM信号参数估计结果。程序已调通,可直接运行。2-85一维插值峰值搜索方式-小红书(xiaohongshu.com)
- 影响幸福感的外部因素
An_d1fa
图片发自App生活条件是无数外部因素共同组成的,在众多因素之中,有五点容易被忽视,却能显著影响生活。一、居住环境的噪声如果你在买栋靠马路的房子,那千万要确保那栋房子不要离道路太过接近。因为你的生活会被汽车轰鸣声,引擎加速声,不耐烦的喇叭声搅乱的支离破碎。研究显示,无论过了多久,人都无法做到完成适应噪声干扰。甚至有研究显示,人有时为了适应噪声,认知功能会因而受损。各式各样、间歇出现的噪声都会干扰我们
- log4j对象改变日志级别
3213213333332132
javalog4jlevellog4j对象名称日志级别
log4j对象改变日志级别可批量的改变所有级别,或是根据条件改变日志级别。
log4j配置文件:
log4j.rootLogger=ERROR,FILE,CONSOLE,EXECPTION
#log4j.appender.FILE=org.apache.log4j.RollingFileAppender
log4j.appender.FILE=org.apache.l
- elk+redis 搭建nginx日志分析平台
ronin47
elasticsearchkibanalogstash
elk+redis 搭建nginx日志分析平台
logstash,elasticsearch,kibana 怎么进行nginx的日志分析呢?首先,架构方面,nginx是有日志文件的,它的每个请求的状态等都有日志文件进行记录。其次,需要有个队 列,redis的l
- Yii2设置时区
dcj3sjt126com
PHPtimezoneyii2
时区这东西,在开发的时候,你说重要吧,也还好,毕竟没它也能正常运行,你说不重要吧,那就纠结了。特别是linux系统,都TMD差上几小时,你能不痛苦吗?win还好一点。有一些常规方法,是大家目前都在采用的1、php.ini中的设置,这个就不谈了,2、程序中公用文件里设置,date_default_timezone_set一下时区3、或者。。。自己写时间处理函数,在遇到时间的时候,用这个函数处理(比较
- js实现前台动态添加文本框,后台获取文本框内容
171815164
文本框
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://w
- 持续集成工具
g21121
持续集成
持续集成是什么?我们为什么需要持续集成?持续集成带来的好处是什么?什么样的项目需要持续集成?... 持续集成(Continuous integration ,简称CI),所谓集成可以理解为将互相依赖的工程或模块合并成一个能单独运行
- 数据结构哈希表(hash)总结
永夜-极光
数据结构
1.什么是hash
来源于百度百科:
Hash,一般翻译做“散列”,也有直接音译为“哈希”的,就是把任意长度的输入,通过散列算法,变换成固定长度的输出,该输出就是散列值。这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,所以不可能从散列值来唯一的确定输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。
- 乱七八糟
程序员是怎么炼成的
eclipse中的jvm字节码查看插件地址:
http://andrei.gmxhome.de/eclipse/
安装该地址的outline 插件 后重启,打开window下的view下的bytecode视图
http://andrei.gmxhome.de/eclipse/
jvm博客:
http://yunshen0909.iteye.com/blog/2
- 职场人伤害了“上司” 怎样弥补
aijuans
职场
由于工作中的失误,或者平时不注意自己的言行“伤害”、“得罪”了自己的上司,怎么办呢?
在职业生涯中这种问题尽量不要发生。下面提供了一些解决问题的建议:
一、利用一些轻松的场合表示对他的尊重
即使是开明的上司也很注重自己的权威,都希望得到下属的尊重,所以当你与上司冲突后,最好让不愉快成为过去,你不妨在一些轻松的场合,比如会餐、联谊活动等,向上司问个好,敬下酒,表示你对对方的尊重,
- 深入浅出url编码
antonyup_2006
应用服务器浏览器servletweblogicIE
出处:http://blog.csdn.net/yzhz 杨争
http://blog.csdn.net/yzhz/archive/2007/07/03/1676796.aspx
一、问题:
编码问题是JAVA初学者在web开发过程中经常会遇到问题,网上也有大量相关的
- 建表后创建表的约束关系和增加表的字段
百合不是茶
标的约束关系增加表的字段
下面所有的操作都是在表建立后操作的,主要目的就是熟悉sql的约束,约束语句的万能公式
1,增加字段(student表中增加 姓名字段)
alter table 增加字段的表名 add 增加的字段名 增加字段的数据类型
alter table student add name varchar2(10);
&nb
- Uploadify 3.2 参数属性、事件、方法函数详解
bijian1013
JavaScriptuploadify
一.属性
属性名称
默认值
说明
auto
true
设置为true当选择文件后就直接上传了,为false需要点击上传按钮才上传。
buttonClass
”
按钮样式
buttonCursor
‘hand’
鼠标指针悬停在按钮上的样子
buttonImage
null
浏览按钮的图片的路
- 精通Oracle10编程SQL(16)使用LOB对象
bijian1013
oracle数据库plsql
/*
*使用LOB对象
*/
--LOB(Large Object)是专门用于处理大对象的一种数据类型,其所存放的数据长度可以达到4G字节
--CLOB/NCLOB用于存储大批量字符数据,BLOB用于存储大批量二进制数据,而BFILE则存储着指向OS文件的指针
/*
*综合实例
*/
--建立表空间
--#指定区尺寸为128k,如不指定,区尺寸默认为64k
CR
- 【Resin一】Resin服务器部署web应用
bit1129
resin
工作中,在Resin服务器上部署web应用,通常有如下三种方式:
配置多个web-app
配置多个http id
为每个应用配置一个propeties、xml以及sh脚本文件
配置多个web-app
在resin.xml中,可以为一个host配置多个web-app
<cluster id="app&q
- red5简介及基础知识
白糖_
基础
简介
Red5的主要功能和Macromedia公司的FMS类似,提供基于Flash的流媒体服务的一款基于Java的开源流媒体服务器。它由Java语言编写,使用RTMP作为流媒体传输协议,这与FMS完全兼容。它具有流化FLV、MP3文件,实时录制客户端流为FLV文件,共享对象,实时视频播放、Remoting等功能。用Red5替换FMS后,客户端不用更改可正
- angular.fromJson
boyitech
AngularJSAngularJS 官方APIAngularJS API
angular.fromJson 描述: 把Json字符串转为对象 使用方法: angular.fromJson(json); 参数详解: Param Type Details json
string
JSON 字符串 返回值: 对象, 数组, 字符串 或者是一个数字 示例:
<!DOCTYPE HTML>
<h
- java-颠倒一个句子中的词的顺序。比如: I am a student颠倒后变成:student a am I
bylijinnan
java
public class ReverseWords {
/**
* 题目:颠倒一个句子中的词的顺序。比如: I am a student颠倒后变成:student a am I.词以空格分隔。
* 要求:
* 1.实现速度最快,移动最少
* 2.不能使用String的方法如split,indexOf等等。
* 解答:两次翻转。
*/
publ
- web实时通讯
Chen.H
Web浏览器socket脚本
关于web实时通讯,做一些监控软件。
由web服务器组件从消息服务器订阅实时数据,并建立消息服务器到所述web服务器之间的连接,web浏览器利用从所述web服务器下载到web页面的客户端代理与web服务器组件之间的socket连接,建立web浏览器与web服务器之间的持久连接;利用所述客户端代理与web浏览器页面之间的信息交互实现页面本地更新,建立一条从消息服务器到web浏览器页面之间的消息通路
- [基因与生物]远古生物的基因可以嫁接到现代生物基因组中吗?
comsci
生物
大家仅仅把我说的事情当作一个IT行业的笑话来听吧..没有其它更多的意思
如果我们把大自然看成是一位伟大的程序员,专门为地球上的生态系统编制基因代码,并创造出各种不同的生物来,那么6500万年前的程序员开发的代码,是否兼容现代派的程序员的代码和架构呢?
- oracle 外部表
daizj
oracle外部表external tables
oracle外部表是只允许只读访问,不能进行DML操作,不能创建索引,可以对外部表进行的查询,连接,排序,创建视图和创建同义词操作。
you can select, join, or sort external table data. You can also create views and synonyms for external tables. Ho
- aop相关的概念及配置
daysinsun
AOP
切面(Aspect):
通常在目标方法执行前后需要执行的方法(如事务、日志、权限),这些方法我们封装到一个类里面,这个类就叫切面。
连接点(joinpoint)
spring里面的连接点指需要切入的方法,通常这个joinpoint可以作为一个参数传入到切面的方法里面(非常有用的一个东西)。
通知(Advice)
通知就是切面里面方法的具体实现,分为前置、后置、最终、异常环
- 初一上学期难记忆单词背诵第二课
dcj3sjt126com
englishword
middle 中间的,中级的
well 喔,那么;好吧
phone 电话,电话机
policeman 警察
ask 问
take 拿到;带到
address 地址
glad 高兴的,乐意的
why 为什么
China 中国
family 家庭
grandmother (外)祖母
grandfather (外)祖父
wife 妻子
husband 丈夫
da
- Linux日志分析常用命令
dcj3sjt126com
linuxlog
1.查看文件内容
cat
-n 显示行号 2.分页显示
more
Enter 显示下一行
空格 显示下一页
F 显示下一屏
B 显示上一屏
less
/get 查询"get"字符串并高亮显示 3.显示文件尾
tail
-f 不退出持续显示
-n 显示文件最后n行 4.显示头文件
head
-n 显示文件开始n行 5.内容排序
sort
-n 按照
- JSONP 原理分析
fantasy2005
JavaScriptjsonpjsonp 跨域
转自 http://www.nowamagic.net/librarys/veda/detail/224
JavaScript是一种在Web开发中经常使用的前端动态脚本技术。在JavaScript中,有一个很重要的安全性限制,被称为“Same-Origin Policy”(同源策略)。这一策略对于JavaScript代码能够访问的页面内容做了很重要的限制,即JavaScript只能访问与包含它的
- 使用connect by进行级联查询
234390216
oracle查询父子Connect by级联
使用connect by进行级联查询
connect by可以用于级联查询,常用于对具有树状结构的记录查询某一节点的所有子孙节点或所有祖辈节点。
来看一个示例,现假设我们拥有一个菜单表t_menu,其中只有三个字段:
- 一个不错的能将HTML表格导出为excel,pdf等的jquery插件
jackyrong
jquery插件
发现一个老外写的不错的jquery插件,可以实现将HTML
表格导出为excel,pdf等格式,
地址在:
https://github.com/kayalshri/
下面看个例子,实现导出表格到excel,pdf
<html>
<head>
<title>Export html table to excel an
- UI设计中我们为什么需要设计动效
lampcy
UIUI设计
关于Unity3D中的Shader的知识
首先先解释下Unity3D的Shader,Unity里面的Shaders是使用一种叫ShaderLab的语言编写的,它同微软的FX文件或者NVIDIA的CgFX有些类似。传统意义上的vertex shader和pixel shader还是使用标准的Cg/HLSL 编程语言编写的。因此Unity文档里面的Shader,都是指用ShaderLab编写的代码,
- 如何禁止页面缓存
nannan408
htmljspcache
禁止页面使用缓存~
------------------------------------------------
jsp:页面no cache:
response.setHeader("Pragma","No-cache");
response.setHeader("Cache-Control","no-cach
- 以代码的方式管理quartz定时任务的暂停、重启、删除、添加等
Everyday都不同
定时任务管理spring-quartz
【前言】在项目的管理功能中,对定时任务的管理有时会很常见。因为我们不能指望只在配置文件中配置好定时任务就行了,因为如果要控制定时任务的 “暂停” 呢?暂停之后又要在某个时间点 “重启” 该定时任务呢?或者说直接 “删除” 该定时任务呢?要改变某定时任务的触发时间呢? “添加” 一个定时任务对于系统的使用者而言,是不太现实的,因为一个定时任务的处理逻辑他是不
- EXT实例
tntxia
ext
(1) 增加一个按钮
JSP:
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%>
<%
String path = request.getContextPath();
Stri
- 数学学习在计算机研究领域的作用和重要性
xjnine
Math
最近一直有师弟师妹和朋友问我数学和研究的关系,研一要去学什么数学课。毕竟在清华,衡量一个研究生最重要的指标之一就是paper,而没有数学,是肯定上不了世界顶级的期刊和会议的,这在计算机学界尤其重要!你会发现,不论哪个领域有价值的东西,都一定离不开数学!在这样一个信息时代,当google已经让世界没有秘密的时候,一种卓越的数学思维,绝对可以成为你的核心竞争力. 无奈本人实在见地