浮点数据在计算机中的存储方式



C语言中,对于浮点类型的数据采用单精度类型(float)和双精度类型(double)来存储,float数据占用32bit, double数据占用

64bit,我们在声明一个变量float f= 2.25f的时候,是如何分配内存的呢?如果胡乱分配,那世界岂不是乱套了么,其实不论是

float还是double在存储方式上都是遵从IEEE的规范的,float遵从的是IEEE R32.24 ,而double 遵从的是R64.53。

无论是单精度还是双精度在存储中都分为三个部分:

1.                   符号位(Sign) :0代表正,1代表为负

2.                   指数位(Exponent):用于存储科学计数法中的指数数据,并且采用移位存储

3.                   尾数部分(Mantissa):尾数部分

其中float的存储方式如下图所示:


而双精度的存储方式为:



 R32.24和R64.53的存储方式都是用科学计数法来存储数据的,比如8.25用十进制的科学计数法表示就为:8.25*10^0 ,而120.5

可以表示为:1.205*10^2 , 这些小学的知识就不用多说了吧。而我们傻蛋计算机根本不认识十进制的数据,他只认识0,1,所以

在计算机存储中,首先要将上面的数更改为二进制的科学计数法表示,8.25用二进制表示可表示为1000.01,我靠,不会连这都

不会转换吧?那我估计要没辙了。120.5用二进制表示为:1110110.1用二进制的科学计数法表示1000.01可以表示为1.0001*2^3 ,

1110110.1可以表示为1.1101101*2^6 ,任何一个数都的科学计数法表示都为1.xxx* 2^n, 尾数部分就可以表示为xxxx,第一位都是1嘛,

干嘛还要表示呀?可以将小数点前面的1省略,所以23bit的尾数部分,可以表示的精度却变成了 24bit,而对于指数部分,因为指数

可正可负,8位的指数位能表示的指数范围就应该为:-127-128了,所以指数部分的存储采用移位存储,存储的数据为元数据+127,

下面就看看8.5和120.5在内存中真正的存储方式。

 首先看下8.5,用二进制的科学计数法表示为:1.0001*2^3

按照上面的存储方式,符号位为:0,表示为正,指数位为:3+127=130 ,位数部分为,故8.5的存储方式如下图所示:


而单精度浮点数120.5的存储方式如下图所示:


下面说下取值范围和精度:
取值范围看指数部分:
float是有符号型,其中,8位指数位,2^8=(-128—127),因此实际的范围是-2^128—2^127,约为-3.4E38—3.4E38
同理double范围约是-1.7E308—1.7E308,
精度是看尾数部分:
float尾数位23位,2^23=8.3E6,7位,所以不同的编译器规定不同,有些是7位,有些8位
double尾数52位,2^52=4.5E15,15位,所以double的有效位数是15位

浮点型变量在计算机内存中占用4字节(Byte),即32-bit。遵循IEEE-754格式标准。


一个浮点数由2部分组成:底数m 和 指数e。
  ±mantissa × 2exponent
(注意,公式中的mantissa 和 exponent使用二进制表示)
底数部分 使用2进制数来表示此浮点数的实际值。
指数部分 占用8-bit的二进制数,可表示数值范围为0-255。

但是指数应可正可负,所以IEEE规定,此处算出的次方须减去127才是真正的指数。所以float的指数可从 -126到128.

底数部分实际是占用24-bit的一个值,由于其最高位始终为 1 ,所以最高位省去不存储,在存储中只有23-bit。

到目前为止, 底数部分 23位 加上指数部分 8位 使用了31位。那么前面说过,float是占用4个字节即32-bit,那么还有一位是干嘛用的呢? 还有一位,其实就是4字节中的最高位,用来指示浮点数的正负,当最高位是1时,为负数,最高位是0时,为正数。


浮点数据就是按下表的格式存储在4个字节中:
Address+0 Address+1 Address+2 Address+3
Contents SEEE EEEE EMMM MMMM MMMM MMMM MMMM MMMM
 S: 表示浮点数正负,1为负数,0为正数


E: 指数加上127后的值的二进制数
M: 24-bit的底数(只存储23-bit)

主意:这里有个特例,浮点数 为0时,指数和底数都为0,但此前的公式不成立。

因为2的0次方为1,所以,0是个特例。当然,这个特例也不用认为去干扰,编译器会自动去识别。


通过上面的格式,我们下面举例看下-12.5在计算机中存储的具体数据:
Address+0 Address+1 Address+2 Address+3
Contents 0xC1 0x48 0x00 0x00
 接下来我们验证下上面的数据表示的到底是不是-12.5,从而也看下它的转换过程。
由于浮点数不是以直接格式存储,他有几部分组成,所以要转换浮点数,首先要把各部分的值分离出来。

Address+0 Address+1 Address+2 Address+3
格式 SEEEEEEE EMMMMMMM MMMMMMMM MMMMMMMM
二进制 11000001 01001000 00000000 00000000
16进制 C1 48 00 00


可见:
S: 为1,是个负数。
E:为 10000010 转为10进制为130,130-127=3,即实际指数部分为3.
M:为 10010000000000000000000。 这里,在底数左边省略存储了一个1,使用 实际底数表示为 1.10010000000000000000000 
到此,我们吧三个部分的值都拎出来了,现在,我们通过指数部分E的值来调整底数部分M的值。

调整方法为:如果指数E为负数,底数的小数点向左移,如果指数E为正数,底数的小数点向右移。小数点移动的位数由指数E的绝对值决定。
这里,E为正3,使用向右移3为即得:
1100.10000000000000000000
至次,这个结果就是12.5的二进制浮点数,将他换算成10进制数就看到12.5了,

如何转换,看下面:

小数点左边的1100 表示为 (1 × 23) + (1 × 22) + (0 × 21) + (0 × 20), 其结果为 12 。
小数点右边的 .100… 表示为 (1 × 2-1) + (0 × 2-2) + (0 × 2-3) + ... ,其结果为.5 。
以上二值的和为12.5, 由于S 为1,使用为负数,即-12.5 。
所以,16进制 0XC1480000 是浮点数 -12.5 。

上面是如何将计算机存储中的二进制数如何转换成实际浮点数,下面看下如何将一浮点数装换成计算机存储格式中的二进制数。
举例将17.625换算成 float型。
首先,将17.625换算成二进制位:10001.101 ( 0.625 = 0.5+0.125, 0.5即 1/2, 0.125即 1/8 如果不会将小数部分转换成二进制,请参考其他书籍。)

再将 10001.101 向右移,直到小数点前只剩一位 成了 1.0001101 x 2的4次方(因为右移了4位)。此时 我们的底数M和指数E就出来了:
底数部分M,因为小数点前必为1,所以IEEE规定只记录小数点后的就好,所以此处底数为 0001101 。
指数部分E,实际为4,但须加上127,固为131,即二进制数 10000011 
符号部分S,由于是正数,所以S为0.
综上所述,17.625的 float 存储格式就是:
0 10000011 00011010000000000000000
转换成16进制:0x41 8D 00 00
所以,一看,还是占用了4个字节。

你可能感兴趣的:(内存管理)