隐马尔科夫模型HMM(2)

书接上文,前一话我们讲到了Forward Algorithm中初始状态的部分概率的计算方法。这次我们继续介绍。

2c.如何计算t>1时刻的部分概率

回忆一下我们如何计算部分概率:

t ( j )= Pr( observation | hidden state is j ) * Pr(all paths to state j at time t)

我们可知(通过递归)乘积中第一项是可用的。那么如何得到Pr(all paths to state j at time t) 呢?

为了计算到达一个状态的所有路径的概率,就等于每一个到达这个状态的路径之和:

随着序列数的增长,所要计算的路径数呈指数增长。但是在t时刻我们已经计算出所有到达某一状态的部分概率,因此在计算t+1时刻的某一状态的部分概率时只和t时刻有关。
这个式子的含义就是恰当的观察概率(状态j下,时刻t+1所真正看到的观察状态的概率)乘以此时所有到达该状态的概率和(前一时刻所有状态的概率与相应的转移概率的积)。因此,我们说在计算t+1时刻的概率时,只用到了t时刻的概率。这样我们就可以计算出整个观察序列的概率。
 
2d.复杂度比较
对于观察序列长度T,穷举法的复杂度为T的指数级;而Forward Algorithm的复杂度为T的线性。
=======================================================
最后我们给出 Forward Algorithm的完整定义
We use the forward algorithm to calculate the probability of a T long observation sequence;

where each of the y is one of the observable set. Intermediate probabilities ( 's) are calculated recursively by first calculating for all states at t=1.

Then for each time step, t = 2, ..., T, the partial probability is calculated for each state;  

that is, the product of the appropriate observation probability and the sum over all possible routes to that state, exploiting recursion by knowing these values already for the previous time step. Finally the sum of all partial probabilities gives the probability of the observation, given the HMM, .   =======================================================

我们还用天气的例子来说明如何计算t=2时刻,状态CLOUDY的部分概率
怎么样?看到这里豁然开朗了吧。要是还不明白,我就.....................还有办法,看个动画效果:
http://www.comp.leeds.ac.uk/roger/HiddenMarkovModels/html_dev/forward_algorithm/s3_pg3.html
参数定义:
http://www.comp.leeds.ac.uk/roger/HiddenMarkovModels/html_dev/forward_algorithm/s3_pg4.html
http://www.comp.leeds.ac.uk/roger/HiddenMarkovModels/html_dev/forward_algorithm/s3_pg5.html
最后记住我们使用这个算法的目的(没有应用任何算法都是垃圾),从若干个HMM模型中选出一个最能够体现给定的观察状态序列的模型(概率最大的那个)。
 
Forward Algorithm (Done)

Viterbi Algorithm

本来想明天再把后面的部分写好,可是谁叫 今天是节日呢?一时情不自禁就有打开电脑..........

找到可能性最大的隐含状态序列

崔晓源 翻译

多数情况下,我们都希望能够根据一个给定的HMM模型,根据观察状态序列找到产生这一序列的潜在的隐含状态序列。

1、穷举搜索方法

 

我们可以通过穷举的方式列出所有可能隐含状态序列,并算出每一种隐状态序列组合对应的观察状态序列的概率。概率最大的那个组合对应的就是最可能的隐状态序列组合。

Pr(observed sequence | hidden state combination).

比如说上图中的trellis中,最有可能的隐状态序列是使得概率:

Pr(dry,damp,soggy | sunny,sunny,sunny), Pr(dry,damp,soggy | sunny,sunny,cloudy), Pr(dry,damp,soggy | sunny,sunny,rainy), . . . . Pr(dry,damp,soggy | rainy,rainy,rainy)

得到最大值的序列。

同样这种穷举法的计算量太大了。为了解决这个问题,我们可以利用和Forward algorithm一样的原理--概率的时间不变性来减少计算量。

2.用递归方式减少复杂度

在给定的观察序列和HMM模型下,我们用一种递归的方式找到最有可能的隐状态序列。同样我们滴定部分概率,即在trellis中到达某一中间状态的概率。然后介绍如何在初始时刻t=1和t>1的时刻分别求解这个部分概率。但要注意,这里的部分概率是到达某一中间状态的概率最大的路径而不是所有概率之和。

2.1部分概率和部分最优路径

看如下trellis

 

对于trellis中的每个中间状态和结束状态,都存在一条到达它的最优路径。他可能是下图这样:

 

我们这些路径为部分最优路径,每一条 部分最优路径都对应一个关联概率--部分概率 。与Forward algorithm不同 是最有可能到达该状态的一条 路径的概率。

  (i,t)是所有序列中在t时刻以状态i终止的最大概率。当然它所对应那条路径就是部分最优路径。  (i,t)对于每个i,t都是存在的。这样我们就可以在时间T(序列的最后一个状态)找到整个序列的最优路径。

2b. 计算 's 在t = 1的初始值

由于在t=1不存在任何部分最优路径,因此可以用初始状态 向量协助计算。

这一点与Forward Algorithm相同

2c. 计算 's 在t > 1 的部分概率

同样我们只用t-1时刻的信息来得到t时刻的部分概率。

由此图可以看出到达X的最优路径是下面中的一条:

(sequence of states), . . ., A, X                                (sequence of states), . . ., B, X or (sequence of states), . . ., C, X

我们希望找到一条概率最大的。回想马尔科夫一阶模型的假设,一个状态之和它前一时刻的状态有关。

Pr (most probable path to A) . Pr (X | A) . Pr (observation | X)

因此到达X的最大概率就是:

 

其中第一部分由t-1时刻的部分概率得到,第二部分是状态转移概率,第三部分是混淆矩阵中对应的概率。

(Viterbi Algorithm 待续)

 

Viterbi Algorithm

书接前文,viterbi算法已经基本成形......

崔晓源 翻译

一般化上一篇最后得到的公式我们可以把概率的求解写成:

2d. 反向指针, 's

考虑下面trellis

现在我们可以得到到达每一个中间或者终点状态的概率最大的路径。但是我们需要采取一些方法来记录这条路径。这就需要在每个状态记录得到该状态最优路径的前一状态。记为:

这样argmax操作符就会选择使得括号中式子最大的索引j。

如果有人问,为什么没有乘以混淆矩阵中的观察概率因子。这是因为我们关心的是在到达当前状态的最优路径中,前一状态的信息,而与他对应的观察状态无关。

2e. viterbi算法的两个优点

1)与Forward算法一样,它极大的降低了计算复杂度

2)viterbi会根据输入的观察序列,“自左向右”的根据上下文给出最优的理解。由于viterbi会在给出最终选择前考虑所有的观察序列因素,这样就避免了由于突然的噪声使得决策原理正确答案。这种情况在真实的数据中经常出现。

==================================================

下面给出viterbi算法完整的定义

1. Formal definition of algorithm

The algorithm may be summarised formally as:

For each i,, i = 1, ... , n, let :

- this intialises the probability calculations by taking the product of the intitial hidden state probabilities with the associated observation probabilities.

For t = 2, ..., T, and i = 1, ... , n let :

- thus determining the most probable route to the next state, and remembering how to get there. This is done by considering all products of transition probabilities with the maximal probabilities already derived for the preceding step. The largest such is remembered, together with what provoked it.

Let :

- thus determining which state at system completion (t=T) is the most probable.

For t = T - 1, ..., 1

Let :

- thus backtracking through the trellis, following the most probable route. On completion, the sequence i1 ... iT will hold the most probable sequence of hidden states for the observation sequence in hand.

==================================================

我们还用天气的例子来说明如何计算状态CLOUDY的部分概率,注意它与Forward算法的区别

还是那句话:
怎么样?看到这里豁然开朗了吧。要是还不明白,我就.....................还有办法,看个动画效果:
http://www.comp.leeds.ac.uk/roger/HiddenMarkovModels/html_dev/viterbi_algorithm/s3_pg3.html
参数定义:
http://www.comp.leeds.ac.uk/roger/HiddenMarkovModels/html_dev/viterbi_algorithm/s3_pg4.html
http://www.comp.leeds.ac.uk/roger/HiddenMarkovModels/html_dev/viterbi_algorithm/s3_pg5.html
别忘了,viterbi算法的目的是根据给定的观察状态序列找出最有可能的隐含状态序列,别忘了viterbi算法不会被中间的噪音所干扰。

尾声

崔晓源 翻译

HMM 的第三个应用就是learning,这个算法就不再这里详述了,并不是因为他难于理解,而是它比前两个算法要复杂很多。这个方向在语音处理数据库上有重要的地位。因为它可以帮助我们在状态空间很大,观察序列很长的环境下找到合适HMM模型参数:初始状态、转移概率、混淆矩阵等。

好了,我们终于可以对HMM做一个阶段性的总结了。通过这个系列的自学过程,我相信各位已经和我一样对HMM的概念和应用有了一个初步的了解。这里我们考虑的都是一阶马尔科夫过程。HMM在语音识别和NLP方面都有很深入的应用。

简单说说我学习HMM的初衷,在科研过程中遇到了reranking的问题,候选一直都是别人为我生成的,处于好奇,终于决定自己也研究一下,大家都知道,reranking是需要产生N-best的候选,既然是N-best,那么viterbi算法就只能生成一条最好的路径,其他的该怎么办呢?原来在实际应用过程中,通常是把viterbi decoding与另一种称为stack decoding的算法联合使用(当然A*算法也可以)产生多个候选。前面我们已经对A*算法作了介绍,在今后的日子里,如果我有时间也会把stack decoding向大家介绍。(希望不要等太长时间)

你可能感兴趣的:(搜索引擎,algorithm,算法,recursion,transition,each,system)