Given preorder and inorder traversal of a tree, construct the binary tree.
Note:
You may assume that duplicates do not exist in the tree.
For example, given
preorder = [3,9,20,15,7] inorder = [9,3,15,20,7]
Return the following binary tree:
3 / \ 9 20 / \ 15 7
-------------------------
Recursive version is easy:
/**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode *Build(vector& inorder, int s1, int e1,
vector& preorder, int s2, int e2) {
if (s1 > e1)
return NULL;
int i, rt_v = preorder[s2];
TreeNode* rt = new TreeNode(rt_v);
for (i=0; ileft = lchild;
rt->right = rchild;
return rt;
}
TreeNode *buildTree(vector &preorder, vector &inorder) {
// Note: The Solution object is instantiated only once and is reused by each test case.
return Build(inorder, 0, inorder.size()-1, preorder, 0, preorder.size()-1);
}
};
Add iterative version:
class Solution:
def buildTree(self, preorder: List[int], inorder: List[int]) -> TreeNode:
if not preorder:
return None
root = TreeNode(preorder[0])
stack = [root]
inorderIndex = 0
for i in range(1, len(preorder)):
preorderVal = preorder[i]
node = stack[-1]
if node.val != inorder[inorderIndex]:
node.left = TreeNode(preorderVal)
stack.append(node.left)
else:
while stack and stack[-1].val == inorder[inorderIndex]:
node = stack.pop()
inorderIndex += 1
node.right = TreeNode(preorderVal)
stack.append(node.right)
return root