[leetcode] 363. Max Sum of Rectangle No Larger Than K

Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix such that its sum is no larger than k.

Example:

Given matrix = [
  [1,  0, 1],
  [0, -2, 3]
]
k = 2

The answer is 2. Because the sum of rectangle [[0, 1], [-2, 3]] is 2 and 2 is the max number no larger than k (k = 2).

Note:

  1. The rectangle inside the matrix must have an area > 0.
  2. What if the number of rows is much larger than the number of columns?

这道题是找二维数组中相加和最大且不大于K的矩形,题目难度为Hard。

乍一看题目蛮复杂的,如果把题目从二维降到一维该如何处理呢?一维数组中处理起来相对简单很多,遍历一维数组,用curSum[j]表示位置j之前所有数组元素之和,依次将curSum存入set中(用set存储便于后续二分查找),遍历到位置j时,如果j之前存在位置i满足curSum[j] - curSum[i] <= K,表明以位置j结尾的序列有满足条件不大于K的,在set中二分查找curSum[j] - K,查找到的位置即是以j结尾且相加和不大于K的最大序列的开始位置,最后比较并更新最大序列和;如果不存在满足curSum[j] - curSum[i] <= K的位置i,表明以位置j结尾的所有序列相加和均大于K。遍历整个一维数组即可得到最终结果。具体代码如下:

int maxSumSeq(vector& num, int k) {
    if(num.empty()) return 0;
    int ret = INT_MIN, curSum = 0;
    set sum;
    sum.insert(0);
    for(int i=0; i

在set中插入0是为了方便二分查找,同时表示下标0之前相加和是0。

一维数组问题解决了,如何扩展到二维数组呢?通过双层遍历行或列即可得到行或列所有可能的区间,例如选择列来进行遍历,针对每个列区间计算该区间中每行区间内元素之和,将列区间内每行元素作为一个整体,这样就把二维数组问题转化为一维数组了,再按照上面处理一维数组的方法即可得到最终结果。具体代码:

class Solution {
public:
    int maxSumSubmatrix(vector>& matrix, int k) {
        int row = matrix.size();
        if(!row) return 0;
        int col = matrix[0].size();
        if(!col) return 0;
        int ret = INT_MIN;
        
        for(int i=0; i sum(row, 0);
            for(int j=i; j sumSet;
                sumSet.insert(0);
                for(int r=0; r
题目追问行比列大很多的情况如何优化?假如矩阵为m行n列,则上面代码的时间复杂度为O(n^2*mlogm),如果外层循环选择行进行遍历,则复杂度变为O(m^2*nlogn),比列遍历大很多,所以在代码中外层循环选择列进行遍历。

你可能感兴趣的:(leetcode)