Apache Storm with Python

环境:


  • 系统:centos7
    ps: 请确认kafkazookeeperstorm部署完成(本文基于Apache ambari搭建的一个集群,进行测试)

  • 安装包:

    1. $ yum install -y gcc python-devel java cyrus-sasl-devel cyrus-sasl-gssapi cyrus-sasl-md5 cyrus-sasl-plain librdkafka-devel redis
    2. Install lein
      $ wget https://raw.githubusercontent.com/technomancy/leiningen/stable/bin/lein
      $ mv lein /usr/bin/
      $ chmod a+x /usr/bin/lein
      $ wget https://github.com/technomancy/leiningen/releases/download/2.8.1/leiningen-2.8.1-standalone.zip
      $ mv leiningen-2.8.1-standalone.zip /root/.lein/self-installs/leiningen-2.8.1-standalone.jar
      $ export LEIN_ROOT = 1
      $ lein version # test lein version
      image.png
  • Create virtualenv
    $ pip install streamparse confluent-kafka redis kazoo

整体架构


Apache Storm with Python_第1张图片
image.png

Start demo


  • get kafka brokers

    1. find zookeeper cluster(through Ambari)


      Apache Storm with Python_第2张图片
      image.png
    2. get brokers
    from kazoo.client import KazooClient
    import json
    
    
    def get_kafka_brokers(host):
        zookeeper = KazooClient(hosts=host, read_only=True)
        zookeeper.start()
        for node in zookeeper.get_children('/brokers/ids'):
            data, stats = zookeeper.get('/brokers/ids/'+node)
            props = json.loads(data)
            yield props['host']+':'+str(props['port'])
        zookeeper.stop()
    
    
    if __name__ == "__main__":
        print ','.join(get_kafka_brokers("cluster1.dc.com, cluster2.dc.com"))
    
    

    输出: cluster2.dc.com:6667
    通过Ambari 确认kafka集群,如图

    image.png

  • producer往brokers生产数据(用了confluent-kafka)

    # -*- coding:utf-8 -*-
    import confluent_kafka
    import random, time
    import json
    from get_broker_list import get_kafka_brokers
    
    
    def error_cb(err):
        print('Error: %s' % err)
    
    
    def main():
        # bootstrap_servers = 'cluster2.dc.com:6667'
        zk_host = 'cluster1.dc.com,cluster2.dc.com'
        bootstrap_servers = ','.join(get_kafka_brokers(zk_host))
        api_version_request = True
        conf = {'bootstrap.servers': bootstrap_servers,
                'api.version.request': api_version_request,
                'error_cb': error_cb,
                'debug': 'protocol',
                'broker.address.family': 'v4'}
        producer = confluent_kafka.Producer(**conf)
        user_list = ['jason', 'jane', 'tom', 'jack']
        while True:
            data = {"user": random.choice(user_list),
                    "timestamp": time.time(),
                    "log_level": random.randint(0, 5)
                   }
            try:
                producer.produce('test', value=json.dumps(data))
                # time.sleep(random.randint(1, 2))
            except BufferError:
                producer.poll(100)
            continue
        producer.flush()
    
    
    if __name__ == '__main__':
        main()
    

    部分结果如图

    Apache Storm with Python_第3张图片
    image.png

  • 创建一个consumer进行验证:

    #!/usr/bin/env python
    import time
    import json
    from confluent_kafka import Consumer, KafkaException, KafkaError
    from get_broker_list import get_kafka_brokers
    
    
    def main():
        # broker = 'cluster2.dc.com:6667'
        zk_host = 'cluster1.dc.com,cluster2.dc.com'
        bootstrap_servers = ','.join(get_kafka_brokers(zk_host))
        group = 'test.py'
        conf = {'bootstrap.servers': bootstrap_servers, 'group.id': group, 'session.timeout.ms': 6000,
                'default.topic.config': {'auto.offset.reset': 'smallest'}}
        consumer = Consumer(**conf)
        consumer.subscribe(['test'])
        while True:
            msg = consumer.poll()
            try:
                print json.loads(msg.value())
            except Exception:
                time.sleep(1)
            continue
        consumer.close()
    
    if __name__ == '__main__':
        main()
    

    部分结果如图

    Apache Storm with Python_第4张图片
    image.png

  • integrate with Storm(use package streamparse

    上面kafka producer产生了一条用户记录,storm demo以计算5分钟内产生了多少条记录(实际效果producer >> consumer,所以导致延迟问题,测试数据大概5分钟写入150w-180w条,资源限制导致的性能问题,仅供参考)

  1. sparse quickstart onlineuser

项目结构如下:
Apache Storm with Python_第5张图片
image.png

其中topologies,bolts,以及spouts中的文件名可能是wordcount相关命名,修改或不修改均可,只需要确认topologies文件中的topology能与spouts中的spout,bolts中的bolt对应起来即可

  1. vim spout/user.py

    import sys, os
    # sys.path.append(os.path.dirname(os.path.abspath(__file__)) + '/../../../kafka_example')
    abspath = "" # must fill with abs path, cannot use os.path.abspath, run as jar in /tmp directory
    if not abspath:
        raise Exception("setting kafka_exmaple directory abspath to import get_broker_list")
    sys.path.append(abspath)
    from confluent_kafka import Consumer
    from streamparse import Spout
    from get_broker_list import get_kafka_brokers
    
    
    class OnlineUserSpout(Spout):
        outputs = ['log']
    
        def initialize(self, stormconf, context):
            # broker = 'cluster2.dc.com:6667'
            zk_host = 'cluster1.dc.com,cluster2.dc.com'
            broker = ','.join(get_kafka_brokers(zk_host))
            group = 'test.py'
            conf = {'bootstrap.servers': broker, 'group.id': group, 'session.timeout.ms': 6000,
                    'default.topic.config': {'auto.offset.reset': 'smallest'}}
            self.consumer = Consumer(**conf)
    
    
        def activate(self):
            self.consumer.subscribe(['test'])
    
        def next_tuple(self):
            msg = self.consumer.poll()
            if msg.value():
                self.emit([msg.value()])
    
        def deactivate(self):
            self.consumer.close()
    
    
  2. vim bolts/serializer_log.py这部分没有考虑用户重复问题

    import json
    import time
    from datetime import datetime, timedelta
    from redis import StrictRedis
    from streamparse import Bolt
    
    
    class RedisLog(Bolt):
    
    
        def initialize(self, conf, ctx):
            self.redis = StrictRedis()
            self.interval_minute = 5
    
        def _increment(self, duration):
            return self.redis.incr(duration)
    
    
        def process(self, tup):
            data = json.loads(tup.values[0])
            user = data['user'] # useless
            timestamp = data["timestamp"]
            now = datetime.fromtimestamp(int(timestamp))
            now = now - timedelta(minutes=now.minute % self.interval_minute,
                              seconds=now.second, microseconds=now.microsecond)
            now_timestamp = int(time.mktime(now.timetuple()))
            duration = '{0}-{1}'.format(now_timestamp, now_timestamp + self.interval_minute * 60)
            count = self._increment(duration)
            self.emit([duration, count])
    
    
  3. vim topologies/onlineuser.py

    """
    Online User topology
    """
    from streamparse import Topology
    from bolts.serializer_log import RedisLog
    from spouts.user import OnlineUserSpout
    
    
    class OnlineUserCount(Topology):
        log_spout = OnlineUserSpout.spec()
        count_bolt = RedisLog.spec(inputs=[log_spout])
    
    
  4. $ sparse run # 必须在sparse quickstart 项目路径下(耗时较久,需要build成jar到/tmp下执行)
    部分结果如图(可能有一些warn,这是由于zookeeper日记文件相关写入延迟,会影响storm性能,测试先忽略)

    Apache Storm with Python_第6张图片
    image.png

  5. 可以通过redis检测key value(key是以时间戳区间,整形,格式 'timestamp1-timestamp2')

    import time
    from redis import StrictRedis
    redis = StrictRedis()
    while 1:
        keys = redis.keys()
        vals = redis.mget(keys)
        kv = zip(keys, vals)
        print kv
        time.sleep(10)
    

    result:大致如图


    image.png
  6. 可能出现的一些问题解决办法:

    • 运行sparse run 时,爆storm版本不一致问题,修改project.clj,由于可能storm也是通过ambari进行安装,输出版本的格式不一致(Hortonworks data platform 版本号,类似‘1.1.0.2.6.2.0-205’,这时候需要去vim xxx/xxx/site-packages/streamparse/cli/run.py 大概48,49修改一下判断or去掉检测)


      image.png
    • 运行sparse run时,可能出现NoClassDefFoundError: org/apache/commons/lang/StringUtils.
      解决的办法
      wget https://www.apache.org/dist/commons/lang/binaries/commons-lang-2.6-bin.zip.md5
      unzip commons-lang-2.6-bin.zip
      cd commons-lang-2.6-bin.zip && mv commons-lang.jar storm/lib
      

Ending


整个过程中,可能还会出现一些issue,可以到对应的项目去查看文档。
Finally,本文原创,未经许可,谢绝转载。=_=!

你可能感兴趣的:(Apache Storm with Python)