- Oracle SQL Plan Management(SPM)技术原理详解
El Shaddai.plus
oracle数据库的牛逼功能oraclesql数据库
OracleSQLPlanManagement(SPM)技术原理详解一、概述:为什么需要SPM?在Oracle数据库中,SQL语句的执行计划(ExecutionPlan)是优化器(CBO)根据统计信息、系统参数和对象结构生成的逻辑操作步骤。然而,以下场景可能导致执行计划不稳定:统计信息更新:表或索引的统计信息变化可能导致优化器选择不同的计划。数据库升级:新版本的优化器算法可能生成更高效(或更低效)
- 常用特征检测算法SURF、SIFT、ORB和FAST
super尚
图像处理算法人工智能计算机视觉
特征检测算法SURF算法特征检测的视觉不变性是一个非常重要的概念。但是要解决尺度不变性问题,难度相当大。为解决这一问题,计算机视觉界引入了尺度不变特征的概念。它的理念是,不仅在任何尺度下拍摄的物体都能检测到一致的关键点,而且每个被检测的特征点都对应一个尺度因子。理想情况下,对于两幅图像中不同尺度的的同一个物体点,计算得到的两个尺度因子之间的比率应该等于图像尺度的比率。近几年,人们提出了多种尺度不变
- 深入解析BFS算法:C++实现无权图最短路径的高效解决方案
Exhausted、
算法c++算法开发语言宽度优先数据结构
在无权图中,广度优先搜索(BFS)是解决最短路径问题的高效算法。接下来博主从专业角度深入探讨其实现细节,并给出C++代码示例:目录一、核心原理二、算法步骤三、C++实现关键点1.数据结构2.边界检查3.路径回溯(可选)四、代码实现五、路径回溯实现六、复杂度分析七、适用场景与限制一、核心原理BFS按层遍历节点,确保首次到达目标节点的路径是最短的。其核心特性为:队列管理:先进先出(FIFO)保证按层扩
- 计算机视觉之图像处理-----SIFT、SURF、FAST、ORB 特征提取算法深度解析
三年呀
计算机视觉图像处理算法深度学习python目标检测机器学习
SIFT、SURF、FAST、ORB特征提取算法深度解析前言在图像处理领域亦或是计算机视觉中,首先我们需要先理解几个名词:什么是尺度不变?在实际场景中,同一物体可能出现在不同距离(如远处的山和近处的树),导致其在图像中的尺度不同,也引出了多尺度的概念。算法检测到的特征在图像缩放(放大或缩小)后仍能被正确识别和匹配,即尺度不变性。什么是旋转不变?物体在现实中的朝向可能任意(如手机横屏/竖屏拍摄同一物
- 雪花算法应用
蚂蚁在飞-
后端
什么是雪花算法?雪花算法是由Twitter开源的分布式ID生成算法,用于生成64位的长整型唯一ID。其结构如下:-1位符号位:始终为0-41位时间戳:精确到毫秒-10位工作机器ID:包含5位数据中心ID和5位机器ID-12位序列号:同一毫秒内的自增序号Golang实现以下是一个完整的Golang实现:packagesnowflakeimport("sync""time""errors")//Sno
- 第一篇:从技术架构视角解析DeepSeek的AI底层逻辑
python算法(魔法师版)
deepseek专栏架构人工智能
——如何通过算法创新与算力优化实现智能跃迁近年来,DeepSeek作为中国AI领域的新锐力量,其技术架构的独特性引发行业高度关注。本文将从技术底层视角,拆解其核心模块设计、算力分配策略与算法进化路径,揭示其快速崛起的工程密码。1.模块化架构:MoE模型的场景适应性突破DeepSeek采用混合专家模型(MixtureofExperts)的变体设计,在千亿参数规模下实现动态任务分配。通过引入「稀疏激活
- 奇安信春招一面面试题
go_to_hacker
安全网络web安全测试工具
《网安面试指南》https://mp.weixin.qq.com/s/RIVYDmxI9g_TgGrpbdDKtA?token=1860256701&lang=zh_CN5000篇网安资料库https://mp.weixin.qq.com/s?__biz=MzkwNjY1Mzc0Nw==&mid=2247486065&idx=2&sn=b30ade8200e842743339d428f414475
- SpringCloud03—服务治理:SpringCloud Eureka
m0_75011249
程序员springcloudeurekajava
《一线大厂Java面试题解析+核心总结学习笔记+最新讲解视频+实战项目源码》,点击传送门,即可获取!spring-boot-starter-parent2.5.1org.springframework.cloudspring-cloud-starter-eureka1.4.7.RELEASEorg.springframework.cloudspring-cloud-dependencies2020
- 【洛谷】P1886 滑动窗口 /【模板】单调队列,经典!
SiMmming
算法算法c++数据结构
目录题目AC代码详解deque语法一道经典的单调队列模板题!!“如果一个选手比你小还比你强,你就可以退役了。”——单调队列的原理——算法学习笔记(66):单调队列-知乎题目P1886滑动窗口/【模板】单调队列-洛谷【普及/提高-】AC代码#includeusingnamespacestd;intn,m;structNode{intid;//编号intval;//大小};dequeq1;//min,
- 冠军算法变体合集再上新!具有新的变异策略和外部归档机制的改进LSHADE-SPACMA算法
群智能算法小狂人
算法
1简介算法提出了一种用于数值优化和点云配准的LSHADE-SPACMA(mLSHADE-SPACMA)的修改版本。首先,提出了一种精确的消除和生成机制,以增强算法的局部开发能力。其次,引入了一种基于改进的半参数自适应策略和基于秩的选择压力的变异策略,改进了算法的进化方向。第三,提出了一种基于精英的外部归档机制,保证了外部种群的多样性,可以加速算法的收敛进度。2.7LSHADE-SPACMA2.7.
- 算法的解题模式Ⅳ
槑呆呆05
算法的解题模式算法
10.二叉树遍历(BinaryTreeTraversal)二叉树遍历是指按照某种顺序依次访问二叉树中的每个节点,使得每个节点仅被访问一次。前序遍历:根->左->右中序遍历:左->根->右后序遍历:左->右->根示例:输入:root=[1,null,2,3]输出:[1,3,2]解释:中序遍历按照左、根、右的顺序访问节点。可使用递归或栈来按此顺序遍历树。力扣相关题目:257.二叉树的所有路径230.二
- BFS算法——层层推进,最短之路,广度优先搜索算法的诗意旅程(下)
诚丞成
常用算法讲解算法宽度优先
文章目录引言一.迷宫中离入口最近的出口1.1题目链接:https://leetcode.cn/problems/nearest-exit-from-entrance-in-maze/1.2题目分析:1.3思路讲解:1.4代码实现:二.最小基因变化2.1题目链接:https://leetcode.cn/problems/minimum-genetic-mutation/description/2.2
- 深度学习模型的全面解析:技术进展、应用场景与未来趋势
阿尔法星球
深度学习与神经网络实战机器学习
1.深度学习模型概述1.1深度学习模型的定义与分类深度学习模型是基于人工神经网络的算法,它们通过模仿人脑的处理机制来学习数据中的复杂模式和特征。这些模型可以根据其结构和应用场景被分为不同的类别,包括但不限于卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)、生成对抗网络(GAN)和Transformer模型等。1.2深度学习模型的关键特点深度学习模型的关键特点在于其深度,即
- 基于深度学习的钢材表面缺陷检测系统:UI界面 + R-CNN + 数据集
深度学习&目标检测实战项目
R-CNN检测系统深度学习uir语言开发语言计算机视觉cnn人工智能
在制造业中,钢材表面缺陷的检测是保证产品质量和生产效率的关键环节。随着工业自动化水平的提高,传统的人工检测已经无法满足快速、精确的检测要求。基于深度学习的钢材表面缺陷检测系统能够通过计算机视觉自动识别钢材表面的缺陷类型和位置,极大地提升了检测的准确性和效率。本文将详细介绍如何基于深度学习、R-CNN算法和自定义数据集构建一个钢材表面缺陷检测系统。内容涵盖从数据准备、R-CNN模型训练到UI界面设计
- 洛谷题单python解 【算法1-1】模拟与高精度
Keyk__
算法python开发语言
P1009[NOIP1998普及组]阶乘之和deffac(n):ifn==0orn==1:return1else:returnn*fac(n-1)s=int(input())fac_sum=0forjinrange(1,s+1):fac_sum+=fac(j)print(str(fac_sum))
- C语言学习,插入排序
五味香
c语言学习排序算法算法开发语言android数据结构
C语言,插入排序是一种简单直观的排序算法,插入排序是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。示例://插入排序函数voidinsertionSort(intarr[],intn){for(inti=1;i=0&&arr[j]>key){arr[j+1]=arr[j];j=j-1;}arr[j+1]=key;}}//打印voidprintArray(inta
- 【Kafka专栏 12】实时数据流与任务队列的较量 :Kafka与RabbitMQ有什么不同
夏之以寒
夏之以寒-kafka专栏kafkarabbitmq数据流任务队列
作者名称:夏之以寒作者简介:专注于Java和大数据领域,致力于探索技术的边界,分享前沿的实践和洞见文章专栏:夏之以寒-kafka专栏专栏介绍:本专栏旨在以浅显易懂的方式介绍Kafka的基本概念、核心组件和使用场景,一步步构建起消息队列和流处理的知识体系,无论是对分布式系统感兴趣,还是准备在大数据领域迈出第一步,本专栏都提供所需的一切资源、指导,以及相关面试题,立刻免费订阅,开启Kafka学习之旅!
- java设计模式单件模式_Head First设计模式(5):单件模式
weixin_39822493
java设计模式单件模式
更多的可以参考我的博客,也在陆续更新inghttp://www.hspweb.cn/单件模式确保一个类只有一个实例,并提供一个全局访点。例子:学生的学号生成方案,是在学生注册后,通过录入学生的基本信息,包括入学学年、学院、专业、班级等信息后,保存相应的资料后自动生成的。学号生成器的业务算法为:入学学年(2位)+学院代码(2位)+专业代码(2位)+班级代码(2位)+序号(2位)1.目录image2.
- 基于ThinkPHP 5~8兼容的推荐算法类实现,
极梦网络无忧
自建推荐算法算法机器学习
在现代推荐系统中,随着用户量和物品量的增长,传统的推荐算法可能会面临性能瓶颈。本文将介绍如何基于ThinkPHP实现一个高性能的推荐系统,结合显性反馈(如兴趣选择)、隐性反馈(如观看时长、评论、点赞、搜索等)、行为序列分析和关键词拆分(支持中文)等功能,并通过优化方案支持大规模用户场景。目录推荐系统简介数据库设计推荐算法类的实现优化方案总结与扩展推荐系统简介推荐系统的目标是根据用户的历史行为,预测
- 计算机考研之数据结构:大 O 记号
CS创新实验室
考研复习408考研数据结构
《数据结构》不仅是计算机考研408的必考科目,也是很多自命题学校要考的科目。这里将刊登系列文章,对《数据结构》这门课的某些问题进行讲解,供学习者参考。在计算机科学领域,算法的效率至关重要。随着数据规模的不断增大,一个高效的算法能够显著提升系统性能,而低效的算法则可能导致程序运行缓慢甚至无法正常工作。为了准确评估算法的效率,我们需要一种科学的方法来衡量算法随着输入规模增长时的运行时间或空间使用情况。
- Spark MLlib中的机器学习算法及其应用场景
Java资深爱好者
深度学习推荐算法
SparkMLlib是ApacheSpark框架中的一个机器学习库,提供了丰富的机器学习算法和工具,用于处理和分析大规模数据。以下是SparkMLlib中的机器学习算法及其应用场景的详细描述:一、SparkMLlib中的机器学习算法分类算法:逻辑回归:用于二分类问题,通过最大化对数似然函数来估计模型参数。支持向量机(SVM):用于分类和回归问题,通过寻找一个超平面来最大化不同类别之间的间隔。决策树
- 实测|用DeepSeek批量生成头条爆款标题,1小时搞定1周工作量!效率提升300%的秘诀全公开
kang_deepsk
AI写作人工智能ai
一、[痛点直击]创作者的标题困境标题内卷:头条每天新增200万条内容,90%的文章因标题平庸被算法“雪藏”。时间黑洞:人工想1个爆款标题平均耗时15分钟,团队日均消耗6小时。数据玄学:模仿热门标题却跑不出量,平台规则变化永远追不上。用户共鸣:“上月写了30篇优质长文,阅读量全不过万,问题竟出在标题上!”——某科技领域创作者自述二、[技术革命]DeepSeek的标题生成黑科技1.爆款基因解码系统实时
- 八大经典排序算法
BUG 劝退师
算法c语言排序算法算法数据结构
八大经典排序算法目录算法概览算法详解冒泡排序选择排序插入排序希尔排序归并排序快速排序堆排序计数排序性能对比1.算法概览排序算法平均时间复杂度空间复杂度稳定性排序方式冒泡排序O(n²)O(1)稳定In-place选择排序O(n²)O(1)不稳定In-place插入排序O(n²)O(1)稳定In-place希尔排序O(nlogn)O(1)不稳定In-place归并排序O(nlogn)O(n)稳定Out
- Vue中虚拟DOM的全面解析
七公子77
vuevue.js前端javascript
一、虚拟DOM的核心概念虚拟DOM(VirtualDOM)是一个轻量级的JavaScript对象,它是对真实DOM的抽象表示。在Vue中,组件模板会被编译成虚拟DOM树,通过Diff算法对比新旧虚拟DOM,计算出最小化的DOM操作,最终批量更新真实DOM。二、为什么需要虚拟DOM?1.直接操作DOM的问题性能瓶颈:DOM操作是浏览器中最昂贵的操作之一,频繁操作会导致性能下降。手动优化困难:开发者需
- 大厂物联网(IoT)高频面试题及参考答案
大模型大数据攻城狮
物联网边缘计算IoTMQTT嵌入式面试单片机网络安全
目录解释物联网(IoT)的基本概念物联网的主要组成部分有哪些?描述物联网的基本架构。IoT与传统网络有什么区别?物联网中常用的传感器类型有哪些?描述物联网的三个主要层次。简述物联网中数据安全的重要性描述物联网安全的主要威胁解释端到端加密在IoT中的作用物联网设备如何防止DDoS攻击?描述IoT设备身份验证的重要性解释“零信任”模型在IoT安全中的应用简述IoT中的数据隐私问题有哪些?描述IoT设备
- 程序三大结构详解:顺序、选择、循环
禁小默
C算法数据结构c++pythonjava
目录前言一、顺序结构二、选择结构1.单分支结构2.双分支结构3.多分支结构4.条件匹配结构三、循环结构1.for循环2.while循环3.do-while循环四、总结与建议前言程序设计中,顺序结构、选择结构、循环结构是最基本的控制结构,也是任何程序的核心组成部分。这三种结构可以组合成任意复杂的算法,掌握它们是学习编程的第一步。本文将详细讲解这三种结构的定义、特点,并结合实际示例帮助理解其应用。一、
- ssd训练自己的数据集
reset2021
目标检测目标检测python深度学习人工智能pytorch
基于SSD算法实现对自己数据集的训练与检测。(该专题以操作为主)SSD是一种非常优秀的one-stage目标检测方法,one-stage算法就是目标检测和分类是同时完成的,其主要思路是利用CNN提取特征后,均匀地在图片的不同位置进行密集抽样,抽样时可以采用不同尺度和长宽比,物体分类与预测框的回归同时进行,整个过程只需要一步,所以其优势是速度快。这篇文档主要讲述怎样用SSD算法来实现对自己数据集的训
- 【算法通关村 Day7】递归与二叉树遍历
Ava_J
算法数据结构
递归与二叉树遍历青铜挑战理解递归递归算法是指一个方法在其执行过程中调用自身。它通常用于将一个问题分解为更小的子问题,通过重复调用相同的方法来解决这些子问题,直到达到基准情况(终止条件)。递归算法通常包括两个主要部分:基准情况(也叫递归终止条件):当问题规模足够小,递归可以停止,通常返回一个简单的结果。递归部分:将问题分解成更小的子问题,并在递归过程中调用自身。为了更清晰地说明递归,我给你一个经典的
- 嵌入式人工智能应用-第四章 KNN 算法介绍 3
数贾电子科技
嵌入式人工智能应用人工智能算法linuxknn
KNN算法介绍1KNN介绍1.1基本概念1.1.1主要步骤1.1.2.距离计算:1.1.3进行预测:2分类介绍2.1KNN算法的K值说明2.2K值的选取2.3距离计算2.4KNN算法特点2.5KNN算法流程3实验验证3.1实验代码-具体代码可以从附件下载3.2演示效果1KNN介绍K邻近(K-NearestNeighbors,KNN)是一种广泛使用的监督学习算法,主要用于分类和回归任务。以下是K邻近
- 每天设计者模式-1:基础面试题
嵌入式Jerry
算法java开发语言docker服务器运维linuxpython
在面试中,设计模式相关的问题几乎是必考项,特别是涉及到架构设计、软件开发和嵌入式系统开发等岗位。掌握常见的设计模式及其应用,不仅有助于提升代码质量,还能在面试中表现出扎实的编程能力。今天,我们来探讨面试中高频出现的设计模式基础问题,并结合示例代码,帮助初学者更好地理解。1.设计模式基础1.1什么是设计模式?为什么要使用设计模式?解答:设计模式是一套被实践证明可行的、可复用的编程解决方案,适用于特定
- 集合框架
天子之骄
java数据结构集合框架
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- Table Driven(表驱动)方法实例
bijian1013
javaenumTable Driven表驱动
实例一:
/**
* 驾驶人年龄段
* 保险行业,会对驾驶人的年龄做年龄段的区分判断
* 驾驶人年龄段:01-[18,25);02-[25,30);03-[30-35);04-[35,40);05-[40,45);06-[45,50);07-[50-55);08-[55,+∞)
*/
public class AgePeriodTest {
//if...el
- Jquery 总结
cuishikuan
javajqueryAjaxWebjquery方法
1.$.trim方法用于移除字符串头部和尾部多余的空格。如:$.trim(' Hello ') // Hello2.$.contains方法返回一个布尔值,表示某个DOM元素(第二个参数)是否为另一个DOM元素(第一个参数)的下级元素。如:$.contains(document.documentElement, document.body); 3.$
- 面向对象概念的提出
麦田的设计者
java面向对象面向过程
面向对象中,一切都是由对象展开的,组织代码,封装数据。
在台湾面向对象被翻译为了面向物件编程,这充分说明了,这种编程强调实体。
下面就结合编程语言的发展史,聊一聊面向过程和面向对象。
c语言由贝尔实
- linux网口绑定
被触发
linux
刚在一台IBM Xserver服务器上装了RedHat Linux Enterprise AS 4,为了提高网络的可靠性配置双网卡绑定。
一、环境描述
我的RedHat Linux Enterprise AS 4安装双口的Intel千兆网卡,通过ifconfig -a命令看到eth0和eth1两张网卡。
二、双网卡绑定步骤:
2.1 修改/etc/sysconfig/network
- XML基础语法
肆无忌惮_
xml
一、什么是XML?
XML全称是Extensible Markup Language,可扩展标记语言。很类似HTML。XML的目的是传输数据而非显示数据。XML的标签没有被预定义,你需要自行定义标签。XML被设计为具有自我描述性。是W3C的推荐标准。
二、为什么学习XML?
用来解决程序间数据传输的格式问题
做配置文件
充当小型数据库
三、XML与HTM
- 为网页添加自己喜欢的字体
知了ing
字体 秒表 css
@font-face {
font-family: miaobiao;//定义字体名字
font-style: normal;
font-weight: 400;
src: url('font/DS-DIGI-e.eot');//字体文件
}
使用:
<label style="font-size:18px;font-famil
- redis范围查询应用-查找IP所在城市
矮蛋蛋
redis
原文地址:
http://www.tuicool.com/articles/BrURbqV
需求
根据IP找到对应的城市
原来的解决方案
oracle表(ip_country):
查询IP对应的城市:
1.把a.b.c.d这样格式的IP转为一个数字,例如为把210.21.224.34转为3524648994
2. select city from ip_
- 输入两个整数, 计算百分比
alleni123
java
public static String getPercent(int x, int total){
double result=(x*1.0)/(total*1.0);
System.out.println(result);
DecimalFormat df1=new DecimalFormat("0.0000%");
- 百合——————>怎么学习计算机语言
百合不是茶
java 移动开发
对于一个从没有接触过计算机语言的人来说,一上来就学面向对象,就算是心里上面接受的了,灵魂我觉得也应该是跟不上的,学不好是很正常的现象,计算机语言老师讲的再多,你在课堂上面跟着老师听的再多,我觉得你应该还是学不会的,最主要的原因是你根本没有想过该怎么来学习计算机编程语言,记得大一的时候金山网络公司在湖大招聘我们学校一个才来大学几天的被金山网络录取,一个刚到大学的就能够去和
- linux下tomcat开机自启动
bijian1013
tomcat
方法一:
修改Tomcat/bin/startup.sh 为:
export JAVA_HOME=/home/java1.6.0_27
export CLASSPATH=$CLASSPATH:$JAVA_HOME/lib/tools.jar:$JAVA_HOME/lib/dt.jar:.
export PATH=$JAVA_HOME/bin:$PATH
export CATALINA_H
- spring aop实例
bijian1013
javaspringAOP
1.AdviceMethods.java
package com.bijian.study.spring.aop.schema;
public class AdviceMethods {
public void preGreeting() {
System.out.println("--how are you!--");
}
}
2.beans.x
- [Gson八]GsonBuilder序列化和反序列化选项enableComplexMapKeySerialization
bit1129
serialization
enableComplexMapKeySerialization配置项的含义
Gson在序列化Map时,默认情况下,是调用Key的toString方法得到它的JSON字符串的Key,对于简单类型和字符串类型,这没有问题,但是对于复杂数据对象,如果对象没有覆写toString方法,那么默认的toString方法将得到这个对象的Hash地址。
GsonBuilder用于
- 【Spark九十一】Spark Streaming整合Kafka一些值得关注的问题
bit1129
Stream
包括Spark Streaming在内的实时计算数据可靠性指的是三种级别:
1. At most once,数据最多只能接受一次,有可能接收不到
2. At least once, 数据至少接受一次,有可能重复接收
3. Exactly once 数据保证被处理并且只被处理一次,
具体的多读几遍http://spark.apache.org/docs/lates
- shell脚本批量检测端口是否被占用脚本
ronin47
#!/bin/bash
cat ports |while read line
do#nc -z -w 10 $line
nc -z -w 2 $line 58422>/dev/null2>&1if[ $?-eq 0]then
echo $line:ok
else
echo $line:fail
fi
done
这里的ports 既可以是文件
- java-2.设计包含min函数的栈
bylijinnan
java
具体思路参见:http://zhedahht.blog.163.com/blog/static/25411174200712895228171/
import java.util.ArrayList;
import java.util.List;
public class MinStack {
//maybe we can use origin array rathe
- Netty源码学习-ChannelHandler
bylijinnan
javanetty
一般来说,“有状态”的ChannelHandler不应该是“共享”的,“无状态”的ChannelHandler则可“共享”
例如ObjectEncoder是“共享”的, 但 ObjectDecoder 不是
因为每一次调用decode方法时,可能数据未接收完全(incomplete),
它与上一次decode时接收到的数据“累计”起来才有可能是完整的数据,是“有状态”的
p
- java生成随机数
cngolon
java
方法一:
/**
* 生成随机数
* @author cngolon@126.com
* @return
*/
public synchronized static String getChargeSequenceNum(String pre){
StringBuffer sequenceNum = new StringBuffer();
Date dateTime = new D
- POI读写海量数据
ctrain
海量数据
import java.io.FileOutputStream;
import java.io.OutputStream;
import org.apache.poi.xssf.streaming.SXSSFRow;
import org.apache.poi.xssf.streaming.SXSSFSheet;
import org.apache.poi.xssf.streaming
- mysql 日期格式化date_format详细使用
daizj
mysqldate_format日期格式转换日期格式化
日期转换函数的详细使用说明
DATE_FORMAT(date,format) Formats the date value according to the format string. The following specifiers may be used in the format string. The&n
- 一个程序员分享8年的开发经验
dcj3sjt126com
程序员
在中国有很多人都认为IT行为是吃青春饭的,如果过了30岁就很难有机会再发展下去!其实现实并不是这样子的,在下从事.NET及JAVA方面的开发的也有8年的时间了,在这里在下想凭借自己的亲身经历,与大家一起探讨一下。
明确入行的目的
很多人干IT这一行都冲着“收入高”这一点的,因为只要学会一点HTML, DIV+CSS,要做一个页面开发人员并不是一件难事,而且做一个页面开发人员更容
- android欢迎界面淡入淡出效果
dcj3sjt126com
android
很多Android应用一开始都会有一个欢迎界面,淡入淡出效果也是用得非常多的,下面来实现一下。
主要代码如下:
package com.myaibang.activity;
import android.app.Activity;import android.content.Intent;import android.os.Bundle;import android.os.CountDown
- linux 复习笔记之常见压缩命令
eksliang
tar解压linux系统常见压缩命令linux压缩命令tar压缩
转载请出自出处:http://eksliang.iteye.com/blog/2109693
linux中常见压缩文件的拓展名
*.gz gzip程序压缩的文件
*.bz2 bzip程序压缩的文件
*.tar tar程序打包的数据,没有经过压缩
*.tar.gz tar程序打包后,并经过gzip程序压缩
*.tar.bz2 tar程序打包后,并经过bzip程序压缩
*.zi
- Android 应用程序发送shell命令
gqdy365
android
项目中需要直接在APP中通过发送shell指令来控制lcd灯,其实按理说应该是方案公司在调好lcd灯驱动之后直接通过service送接口上来给APP,APP调用就可以控制了,这是正规流程,但我们项目的方案商用的mtk方案,方案公司又没人会改,只调好了驱动,让应用程序自己实现灯的控制,这不蛋疼嘛!!!!
发就发吧!
一、关于shell指令:
我们知道,shell指令是Linux里面带的
- java 无损读取文本文件
hw1287789687
读取文件无损读取读取文本文件charset
java 如何无损读取文本文件呢?
以下是有损的
@Deprecated
public static String getFullContent(File file, String charset) {
BufferedReader reader = null;
if (!file.exists()) {
System.out.println("getFull
- Firebase 相关文章索引
justjavac
firebase
Awesome Firebase
最近谷歌收购Firebase的新闻又将Firebase拉入了人们的视野,于是我做了这个 github 项目。
Firebase 是一个数据同步的云服务,不同于 Dropbox 的「文件」,Firebase 同步的是「数据」,服务对象是网站开发者,帮助他们开发具有「实时」(Real-Time)特性的应用。
开发者只需引用一个 API 库文件就可以使用标准 RE
- C++学习重点
lx.asymmetric
C++笔记
1.c++面向对象的三个特性:封装性,继承性以及多态性。
2.标识符的命名规则:由字母和下划线开头,同时由字母、数字或下划线组成;不能与系统关键字重名。
3.c++语言常量包括整型常量、浮点型常量、布尔常量、字符型常量和字符串性常量。
4.运算符按其功能开以分为六类:算术运算符、位运算符、关系运算符、逻辑运算符、赋值运算符和条件运算符。
&n
- java bean和xml相互转换
q821424508
javabeanxmlxml和bean转换java bean和xml转换
这几天在做微信公众号
做的过程中想找个java bean转xml的工具,找了几个用着不知道是配置不好还是怎么回事,都会有一些问题,
然后脑子一热谢了一个javabean和xml的转换的工具里,自己用着还行,虽然有一些约束吧 ,
还是贴出来记录一下
顺便你提一下下,这个转换工具支持属性为集合、数组和非基本属性的对象。
packag
- C 语言初级 位运算
1140566087
位运算c
第十章 位运算 1、位运算对象只能是整形或字符型数据,在VC6.0中int型数据占4个字节 2、位运算符: 运算符 作用 ~ 按位求反 << 左移 >> 右移 & 按位与 ^ 按位异或 | 按位或 他们的优先级从高到低; 3、位运算符的运算功能: a、按位取反: ~01001101 = 101
- 14点睛Spring4.1-脚本编程
wiselyman
spring4
14.1 Scripting脚本编程
脚本语言和java这类静态的语言的主要区别是:脚本语言无需编译,源码直接可运行;
如果我们经常需要修改的某些代码,每一次我们至少要进行编译,打包,重新部署的操作,步骤相当麻烦;
如果我们的应用不允许重启,这在现实的情况中也是很常见的;
在spring中使用脚本编程给上述的应用场景提供了解决方案,即动态加载bean;
spring支持脚本