- QLoRa使用教程
云帆@
训练peft人工智能
一、定义定义案例1二、实现定义QLoRa:量化+LoRa.网址:https://huggingface.co/docs/peft/main/en/developer_guides/quantization案例11.4bit量化+LoRaimporttorchfromtransformersimportBitsAndBytesConfigconfig=BitsAndBytesConfig(load_
- 力扣SQL仅数据库(1068~1084)
朵&朵
数据库sqlmysql
1068.产品销售分析1需求编写解决方案,以获取Sales表中所有sale_id对应的product_name以及该产品的所有year和price。输入:Sales表:+---------+------------+------+----------+-------+|sale_id|product_id|year|quantity|price|+---------+------------+--
- 《重构:改善既有代码的设计》-学习笔记二(+实战解析
2401_86367399
面试辅导大厂内推重构学习笔记
returnfinalPrice;}privatedoublediscountedPrice(intdiscountLevel){if(discountLevel==2)returngetBasePrice()*0.1;elsereturngetBasePrice()*0.05;}privateintgetBasePrice(){return_quantity*_itemPrice;}优化1,2,
- TensorRT模型量化实践
痛&快乐着
深度学习TensorRTc++深度学习
文章目录量化基本概念量化的方法方式1:trtexec(PTQ的一种)方式2:PTQ2.1pythononnx转trt2.2polygraphy工具:应该是对2.1量化过程的封装方式3:QAT(追求精度时推荐)使用TensorRT量化实践(C++版)使用TensorRT量化(python版)参考文献量化基本概念后训练量化PostTrainingQuantization(PTQ)量化过程仅仅通过离线推
- 股票中的情侣——配对交易
鸿鹄Max
什么是配对交易?配对交易(PairsTrading)是指八十年代中期华尔街著名投行MorganStanley的数量交易员NunzioTartaglia成立的一个数量分析团队提出的一种市场中性投资策略,,其成员主要是物理学家、数学家、以及计算机学家。GanapathyVidyamurthy在《PairsTrading:QuantitativeMethodsandAnalysis》一书中定义配对交易为
- 地平线旭日x3派部署yolov8
巴啦啦魔仙变!!
YOLOpython数学建模
地平线旭日x3派部署yolov8总体流程1.导出onnx模型导出YOLOV8_onnxruntime.py验证onnxutils.py2.在开发机转为bin模型2.1准备数据图片2.2转换必备的yaml文件2.3开始转换3.开发机验证**quantized_model.onnx4.板子运行bin模型资源链接总体流程1.导出onnx模型导出使用yolov8的github库导出onnx模型。注意设置o
- ClickHouse 分布式部署、分布式表创建及数据迁移指南
努力做一名技术
clickhouse分布式
文章目录部署ClickHouse集群1.1环境准备1.2安装ClickHouse1.3配置集群创建分布式表2.1创建本地表2.2创建分布式表2.3删除分布式表测试分布式表3.1插入测试数据。配置和管理4.1配置监控4.2数据备份数据迁移5.1导出5.2导入部署ClickHouse集群QuantumInsights的部署将基于一个高可用的分布式ClickHouse集群,以实现对大规模数据的高效处理和
- 电转染实验,如何设置siRNA实验对照组?
实验小助手
1.设置空白对照组,检验细胞生长状态。2.设置阴性对照组,无血清培养基+Entranster-E电转染试剂+阴性siRNA。3.设置阳性对照组,无血清培养基+Entranster-E电转染试剂+靶向siRNA转染管家基因,比如GAPDH或者LaminA/C,之后通过westernblotting或者mRNAquantification检测基因的表达。如需了解更多关于电转染试剂的信息,请咨询英格恩生
- salmon分析RNA-seq实战
超级无敌大蜗牛
Salmon应用查看帮助文档#查看可用的命令###Salmonv0.9.1salmon-h#查看帮助文档之Salmon'squasi-mapping-basedmodesalmon--no-version-checkquant--help-reads#查看帮助文档之Salmon'salignment-basedmodesalmon--no-version-checkquant--help-alig
- 没错 !python杀死了excel!为何python这么火,咱们来说一下!
IT领域君
月前,日本最大的证券公司之一野村证券首席数字官马修·汉普森,在QuantConference上发表讲话:“用Excel的人越来越少,大家都在码Python代码。”甚至直接说:“Python已经取代了Excel。”事实上,为了追求更高的效率和质量,他们开始使用比Excel更高效的Python,随后交易收入增长了15%。而Python的应用领域极为广泛,尤其是在数据分析领域,与SQL数据库、统计数学、
- 学习日志6
Simon#0209
学习
关于量子强化学习:论文Variational_Quantum_Circuits_for_Deep_Reinforcement_Learning:变分量子电路在深度强化学习中的应用论文主要内容:将经典深度强化学习算法(如经验重放和目标网络)重塑为变分量子电路的表示摘要当前最先进的机器学习方法基于经典冯·诺伊曼计算架构,并在许多工业和学术领域得到广泛应用。随着量子计算的发展,研究人员和技术巨头们试图为
- 基于示例详细讲解模型PTQ量化的步骤(含代码)
LQS2020
卷积神经网络python
详细探讨模型PTQ量化每个步骤,涉及更多的技术细节和实际计算方法,以便更好地理解PTQ(Post-TrainingQuantization,训练后量化)的全过程。1.模型训练我们假设已经训练了一个卷积神经网络(CNN),例如VGG-16。训练完成后,我们得到了一个以32位浮点数表示的模型权重和激活值。2.收集统计信息在量化之前,我们需要从模型中收集统计信息,以帮助确定量化的参数。收集权重和激活的统
- Piquant boys and Funning girls
CC波罗蜜
"Becareful","Firmlygrasp","Lookout",inmygymnasticclass,Ineedtosaythosewordsmanytimes,becausetheyaretooactivity.Inthefirstclass,Ispeakedthatgymnasticwasafunnysport,whileithaddifficutactions,eventhoughy
- 【大模型】大模型 CPU 推理之 llama.cpp
szZack
大语言模型人工智能大模型人工智能llama.cpp
【大模型】大模型CPU推理之llama.cppllama.cpp安装llama.cppMemory/DiskRequirementsQuantization测试推理下载模型测试参考llama.cpp描述Themaingoalofllama.cppistoenableLLMinferencewithminimalsetupandstate-of-the-artperformanceonawideva
- Grouping Sets语句知识讲解
王二空间
数据结构算法sql
前言SQL中GroupBy语句大家都很熟悉,根据指定的规则对数据进行分组,常常和聚合函数一起使用。比如,考虑有表dealer,表中数据如下:id(Int)city(String)car_model(String)quantity(Int)100FremontHondaCivic10100FremontHondaAccord15100FremontHondaCRV7200DublinHondaCiv
- 【金融数据接口】choice数据python使用教程
hutaotaotao
finance金融python数据分析
目录(0)是否收费(1)sdk包下载、激活与使用说明1.下载安装包2.安装与激活(3)python使用demo(0)是否收费(是)像wind一样,会收费。(1)sdk包下载、激活与使用说明1.下载安装包下载地址:Choice数据量化接口-下载中心这里我们下载python版本的压缩包EmQuantAPI_Python.zip,下载完成后解压。解压后的文件情况如下:其中文件夹python3下的文件情况
- A brief review of probability theory
世界上的一道风
AbriefreviewofprobabilitytheoryFundamentalrulesproductrule:yieldchainrule:sumrule:Bayesrule:Quantiles(分位数)cdf是,逆函数是,分位数的作用是,有,表示的意思是。也就是说,是一个概率值,代入累积分布的逆函数中,返回的是对应概率面积的截断点:根据公式测试:importnumpyasnpimport
- chatGLM-6B部署报错quantization_kernels_parallel.so‘ (or one of its dependencies). Try using the full pat
FL1623863129
环境配置深度学习
用python部署chatglm2时候报错:FileNotFoundError:Couldnotfindmodule'C:\Users\Administrator\.cache\huggingface\modules\transformers_modules\chatglm2-6b-int4\quantization_kernels_parallel.so'(oroneofitsdependenc
- 神经网络量化
小厂程序猿
人工智能
神经网络量化(NeuralNetworkQuantization)是一种技术,旨在减少神经网络模型的计算和存储资源需求,同时保持其性能。在深度学习中,神经网络模型通常使用高精度的参数(例如32位浮点数)来表示权重和激活值。然而,这种表示方式可能会占用大量的内存和计算资源,特别是在部署到资源受限的设备(如移动设备或嵌入式系统)时会受到限制。神经网络量化通过将模型参数和激活值从高精度表示(例如32位浮
- vim搜索和替换
ketaotech
vimvimchrome编辑器
目录正则表达式1.特殊字符2.字符类(character-classes)3.规则4.交替和分组5.量词(quantifier)和重数(multi)贪婪模式(greedy)非贪婪模式(non-greedy)6.魔法(magic)详解6.1.基本魔法(magic)6.2.无魔法(nomagic)6.3.深度魔法(verymagic)7.正则表达式举例7.1.精确匹配单词7.2.变量,方法或类的重命名
- 【深入了解PyTorch】模型优化和加速:PyTorch优化技术与库的应用
prince_zxill
Python实战教程人工智能与机器学习教程pytorch人工智能python
【深入了解PyTorch】模型优化和加速:PyTorch优化技术与库的应用模型优化和加速:PyTorch优化技术与库的应用模型剪枝(ModelPruning)模型量化(ModelQuantization)混合精度训练(MixedPrecisionTraining)总结模型优化和加速:PyTorch优化技术与库的应用在机器学习和深度学习领域,模型的性能和效率一直是研究和应用的重要关注点。随着模型越来
- 第三章 基础数据和技术指标 | 波动率计算
阿岛格
人工智能.量化投资深度学习神经网络数据挖掘机器学习
三、波动率计算波动率计算历史波动率:自行采用不同算法,包括c2c、parkinson、garmanklass、rsy、yz隐含波动率:自行采用QuantLib/Mibian计算实时隐含波动率波动率VIX(恐慌指数):自行编码模块实时计算VIX指数(分钟/日级别)#计算历史某一天的iVIX#Basedonhttp://www.cboe.com/micro/vix/vixwhite.pdfdefcal
- 使用 Quantumult X 破解Emby for ios 客户端
Emby(原名MediaBrowser)是一个主从式架构的媒体服务器软件,可以用来整理服务器上的视频和音频,并将音频和视频流式传输到客户端设备。此教程主要讲述如何使用QuantumultX破除Emby使用限制.信任证书根据如图步骤,信任生成的证书信任证书添加重写规则进入“编辑”编辑重写规则在[rewrite_remote]下添加以下信息并保存https://raw.githubuserconten
- 量化宽松真的就是印钞票吗
Britneyyy
QE量化宽松是什么?量化宽松(QuantitativeEasing,简称QE),并不是所谓的印很多的钱,也不是派钱。而是一种非传统的货币政策,是中央银行在金融市场上买卖政府债券,来控制货币供给和利率的政策行为。政府债券是政府为筹集资金而向投资者出具并承诺在一定时期支付利息并偿还本金的凭证。那么,当经济不景气时,中央银行会变身买家从商业银行买入大量政府债券,那么商业银行就会瞬间多了很多资金,市场供应
- 机器学习实战1-基础运用(2022/10/11)
点灯的棉羊
机器学习Jupyter笔记机器学习pythonnumpy
机器学习实战1-基础运用文章目录机器学习实战1-基础运用numpy的简单运用生成矩阵和矩阵的简单操作用pandas库读取、保存csv数据文件read_csv()函数及读入的数据处理to_csv()保存数据matplotlib.pyplot库绘图的使用条形图的绘制箱型图的绘制分位数(Quantile)分位点/四分位数分位数与箱型图`boxplot()`函数绘制交叉报表热力图plt绘图基础import
- R语言实战第5章:高级数据管理
亚航
本章内容数字和统计函数字符处理函数循环和条件执行自编函数数据整合与重塑5.1一个数据处理难题题目详见R语言实战第一版第86页(需要的同学,公众号私信:R语言实战。小编会发连接)5.2数值和字符处理函数数值函数(数学、统计、概率)字符处理函数5.2.1数学函数略5.2.2统计函数函数描述mean(x)平均数median(x)中位数sd(x)标准差var(x)方差mad(x)绝对中位差quantile
- DAX从入门到精通 3-3-1 使用表表达式
PowerBI入门到实践
使用表表达式本章的开头,你可以看到,我们通常会使用表表达式作为DAX的参数。典型的使用方法是在函数中迭代一个表,对表中的每个行进行计算。例如,下面的sumx,所有其他以x为结尾的聚合函数都是这样的模式:[SalesAmount]:=SUMX(Sales,Sales[Quantity]*Sales[UnitPrice])可以用表函数来替代sales表,例如,可以使用filer来筛选销售数量大于1的记
- Memory Wall in Neural Network Inference
简vae
软硬件结合PIMforAIgpu算力cnnlstmtransformer
MemoryWallinNeuralNetworkInference神经网络推理的瓶颈在于访存带宽,通常无法发挥出加速器的全部算力。本文总结了目前常用的推理加速器及其设计,并分析了常用神经网络的访存瓶颈。文章大部分内容参考自ComputerArchitecture:AQuantitativeApproach。1Computecentricaccelerators1.1CPU一般来说,CPU擅长于做
- Quantitative Analysis: PIM Chip Demands for LLAMA-7B inference
简vae
软硬件结合neardataprocessingPIMforAIllamatransformer
1Architecture如果将LLAMA-7B模型参数量化为4bit,则存储模型参数需要3.3GB。那么,至少PIMchip的存储至少要4GB。AiM单个bank为32MB,单个die512MB,至少需要8个die的芯片。8个die集成在一个芯片上。提供8×16bank级别的访存带宽。整个推理过程完全下放至PIM。CPU把prompt传给ControllerController控制推理过程,将推
- 23年你可能错过的 10个 前端新变化
程序员
2023年前端圈中迎来了很多新的变化,快来回顾一下吧1.可迭代对象groupby使用groupby很容易对可迭代对象进行分组,例如下面的数组示例数据constarr=[{name:"芦笋",type:"蔬菜",quantity:5},{name:"香蕉",type:"水果",quantity:0},{name:"山羊",type:"肉",quantity:23},{name:"樱桃",type:"
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟