iOS 11之Vision人脸检测

代码地址如下:
http://www.demodashi.com/demo/11783.html

大道如青天,我独不得出

前言

在上一篇iOS Core ML与Vision初识中,初步了解到了vision的作用,并在文章最后留了个疑问,就是类似下面的一些函数有什么用

- (instancetype)initWithCIImage:(CIImage *)image options:(NSDictionary<VNImageOption, id> *)options;

- (instancetype)initWithCVPixelBuffer:(CVPixelBufferRef)pixelBuffer options:(NSDictionary<VNImageOption, id> *)options;

在查阅一些资料后,最终通过这些函数得到了如下的效果


对,没错,这就是通过initWithCVPixelBuffer函数来实现的。当然vision的作用远不于此,还有如下的效果
1、图像匹配(上篇文章中的效果)
2、矩形检测
3、二维码、条码检测
4、目标跟踪
5、文字检测
6、人脸检测
7、人脸面部特征检测
由于对人脸识别比较感兴趣,所以这里就主要简单了解了下人脸部分,下面就针对人脸检测和面部检测写写

Vision支持的图片类型

通过查看VNRequestHandler.h文件,我们可以看到里面的所有初始化函数,通过这些初始化函数,我们可以了解到支持的类型有:
1、CVPixelBufferRef
2、CGImageRef
3、CIImage
4、NSURL
5、NSData

Vision使用

在使用vision的时候,我们首先需要明确自己需要什么效果,然后根据想要的效果来选择不同的类,最后实现自己的效果
1、需要一个RequestHandler,在创建RequestHandler的时候,需要一个合适的输入源,及图片类型
2、需要一个Request,在创建Request的时候,也需要根据实际情况来选择,Request大概有如下这么些

iOS 11之Vision人脸检测_第1张图片
3、通过requestHandlerrequest联系起来,然后得到结果

[handler performRequests:@[requset] error:&error];

4、处理结果VNObservation,在VNRequestresults数组中,包含了VNObservation结果,VNObservation也分很多种,这和你Request的类型是相关联的

iOS 11之Vision人脸检测_第2张图片

在完成上述步骤后,我们就可以根据结果来实现一些我们想要的效果

人脸矩形检测

这里我们需要用到VNDetectFaceRectanglesRequest

requset = [[VNDetectFaceRectanglesRequest alloc] initWithCompletionHandler:completionHandler];

在得到结果后,我们需要处理下坐标

    for (VNFaceObservation *faceObservation in observations) {
        //boundingBox
        CGRect transFrame = [self convertRect:faceObservation.boundingBox imageSize:image.size];
        [rects addObject:[NSValue valueWithCGRect:transFrame]];
    }
// 转换Rect
- (CGRect)convertRect:(CGRect)boundingBox imageSize:(CGSize)imageSize{
    CGFloat w = boundingBox.size.width * imageSize.width;
    CGFloat h = boundingBox.size.height * imageSize.height;
    CGFloat x = boundingBox.origin.x * imageSize.width;
    CGFloat y = imageSize.height * (1 - boundingBox.origin.y - boundingBox.size.height);//- (boundingBox.origin.y * imageSize.height) - h;
    return CGRectMake(x, y, w, h);
}

在返回结果中的boundingBox中的坐标,我们并不能立即使用,而是需要进行转换,因为这里是相对于image的一个比例,这里需要注意的是y坐标的转换,因为坐标系的y轴和UIViewy轴是相反的。
最后就是通过返回的坐标进行矩形的绘制

+ (UIImage *)gl_drawImage:(UIImage *)image withRects:(NSArray *)rects
{
    UIImage *newImage = nil;
    UIGraphicsBeginImageContextWithOptions(image.size, NO, [UIScreen mainScreen].scale);
    CGContextRef context = UIGraphicsGetCurrentContext();
    CGContextSetLineCap(context,kCGLineCapRound); //边缘样式
    CGContextSetLineJoin(context, kCGLineJoinRound);
    CGContextSetLineWidth(context,2); //线宽
    CGContextSetAllowsAntialiasing(context,YES); //打开抗锯齿
    CGContextSetStrokeColorWithColor(context, [UIColor redColor].CGColor);
    CGContextSetFillColorWithColor(context, [UIColor clearColor].CGColor);

    //绘制图片
    [image drawInRect:CGRectMake(0, 0,image.size.width, image.size.height)];
    CGContextBeginPath(context);
    for (int i = 0; i < rects.count; i ++) {
        CGRect rect = [rects[i] CGRectValue];
        CGPoint sPoints[4];//坐标点
        sPoints[0] = CGPointMake(rect.origin.x, rect.origin.y);//坐标1
        sPoints[1] = CGPointMake(rect.origin.x + rect.size.width, rect.origin.y);//坐标2
        sPoints[2] = CGPointMake(rect.origin.x + rect.size.width, rect.origin.y + rect.size.height);//坐标3
        sPoints[3] = CGPointMake(rect.origin.x , rect.origin.y + rect.size.height);

        CGContextAddLines(context, sPoints, 4);//添加线
        CGContextClosePath(context); //封闭
    }
    CGContextDrawPath(context, kCGPathFillStroke); //根据坐标绘制路径

    newImage = UIGraphicsGetImageFromCurrentImageContext();
    UIGraphicsEndImageContext();
    return newImage;
}

效果如下

iOS 11之Vision人脸检测_第3张图片

人脸特征识别

这里我们需要用到VNDetectFaceLandmarksRequest

            requset = [[VNDetectFaceLandmarksRequest alloc] initWithCompletionHandler:completionHandler];

处理结果

    for (VNFaceObservation *faceObservation in observations) {
        //boundingBox
        CGRect transFrame = [self convertRect:faceObservation.boundingBox imageSize:image.size];
        [rects addObject:[NSValue valueWithCGRect:transFrame]];
    }
    pointModel.faceRectPoints = rects;
    return pointModel;
}

- (GLDiscernPointModel *)handlerFaceLandMark:(NSArray *)observations image:(UIImage *)image
{
    GLDiscernPointModel *pointModel = [[GLDiscernPointModel alloc] init];
    NSMutableArray *rects = @[].mutableCopy;

    for (VNFaceObservation *faceObservation in observations) {

        VNFaceLandmarks2D *faceLandMarks2D = faceObservation.landmarks;

        [self getKeysWithClass:[VNFaceLandmarks2D class] block:^(NSString *key) {
            if ([key isEqualToString:@"allPoints"]) {
                return ;
            }
            VNFaceLandmarkRegion2D *faceLandMarkRegion2D = [faceLandMarks2D valueForKey:key];

            NSMutableArray *sPoints = [[NSMutableArray alloc] initWithCapacity:faceLandMarkRegion2D.pointCount];

            for (int i = 0; i < faceLandMarkRegion2D.pointCount; i ++) {
                CGPoint point = faceLandMarkRegion2D.normalizedPoints[i];

                CGFloat rectWidth = image.size.width * faceObservation.boundingBox.size.width;
                CGFloat rectHeight = image.size.height * faceObservation.boundingBox.size.height;
                CGPoint p = CGPointMake(point.x * rectWidth + faceObservation.boundingBox.origin.x * image.size.width, faceObservation.boundingBox.origin.y * image.size.height + point.y * rectHeight);
                [sPoints addObject:[NSValue valueWithCGPoint:p]];
            }

            [rects addObject:sPoints];
        }];
    }

在这里,我们需要注意到landmarks这个属性,这是一个VNFaceLandmarks2D类型的对象,里面包含着许多面部特征的VNFaceLandmarkRegion2D对象,如:faceContourleftEyenose….分别表示面部轮廓、左眼、鼻子。这些对象中,又包含下面这么一个属性

@property (readonly, assign, nullable) const CGPoint* normalizedPoints

这是一个包含该面部特征的的数组,所以我们可以通过下面的方式取出里面的坐标

CGPoint point = faceLandMarkRegion2D.normalizedPoints[i];

当然这里面也存在坐标的转换,见上面代码
最后也是画线,代码如下

+ (UIImage *)gl_drawImage:(UIImage *)image faceLandMarkPoints:(NSArray *)landMarkPoints
{
    UIImage * newImage = image;
    for (NSMutableArray *points in landMarkPoints) {

        CGPoint sPoints [points.count];

        for (int i = 0;i .count;i++) {
            NSValue *pointValue = points[i];
            CGPoint point = pointValue.CGPointValue;
            sPoints[i] = point;
        }
        //画线
        UIGraphicsBeginImageContextWithOptions(newImage.size, NO, [UIScreen mainScreen].scale);
        CGContextRef context = UIGraphicsGetCurrentContext();
        CGContextSetLineCap(context,kCGLineCapRound); //边缘样式
        CGContextSetLineJoin(context, kCGLineJoinRound);
        CGContextSetLineWidth(context,2); //线宽
        CGContextSetAllowsAntialiasing(context,YES); //打开抗锯齿
        // 设置翻转
        CGContextTranslateCTM(context, 0, newImage.size.height);
        CGContextScaleCTM(context, 1.0, -1.0);

        CGContextSetStrokeColorWithColor(context, [UIColor redColor].CGColor);
        CGContextSetFillColorWithColor(context, [UIColor clearColor].CGColor);

        CGContextDrawImage(context, CGRectMake(0, 0,newImage.size.width,newImage.size.height), newImage.CGImage);

        CGContextBeginPath(context);
        CGContextAddLines(context, sPoints,points.count);//添加线
        CGContextClosePath(context); //封闭
        CGContextDrawPath(context, kCGPathFillStroke); //根据坐标绘制路径
        newImage = UIGraphicsGetImageFromCurrentImageContext();
        UIGraphicsEndImageContext();
    }
    return newImage;
}

效果如下

iOS 11之Vision人脸检测_第4张图片

动态人脸矩形检测

要动态来检测,那么我们肯定需要通过相机来实时取出资源,然后再实现,所以我们这里选择了AVCapture,关于相机的初始化及使用方法这里就不在累赘了,我们直接上代码
AVCaptureVideoDataOutputSampleBufferDelegate中,通过下面的方法

- (void)captureOutput:(AVCaptureOutput *)output didOutputSampleBuffer:(CMSampleBufferRef)sampleBuffer fromConnection:(AVCaptureConnection *)connection

我们可以进行这么一个转换

CVPixelBufferRef cvpixeBufferRef = CMSampleBufferGetImageBuffer(sampleBuffer);

然后通过

    VNImageRequestHandler *handler = [[VNImageRequestHandler alloc] initWithCVPixelBuffer:cvpixeBufferRef options:@{}];

将相机返回的图片与request进行关联了。
后续操作如下

            request = [[VNDetectFaceRectanglesRequest alloc] initWithCompletionHandler:^(VNRequest * _Nonnull request, NSError * _Nullable error) {

                NSLog(@" 打印信息:%lu",request.results.count);
                NSArray *vnobservations = request.results;

                dispatch_async(dispatch_get_main_queue(), ^{
                    //先移除之前的矩形框
                    [self.rectLayers makeObjectsPerformSelector:@selector(removeFromSuperlayer)];

                    AVCaptureDevicePosition position = [[self.avInput device] position];



                    for (VNFaceObservation *faceObservation in vnobservations) {
                        //boundingBox
                        CGRect transFrame = [[GLTools sharedInstance] convertRect:faceObservation.boundingBox imageSize:self.view.frame.size];
                        //前置摄像头的时候 记得转换
                        if (position == AVCaptureDevicePositionFront){
                            transFrame.origin.x = self.view.frame.size.width - transFrame.origin.x - transFrame.size.width;
                        }

                        CALayer *rectLayer = [CALayer layer];
                        rectLayer.frame = transFrame;
                        rectLayer.borderColor = [UIColor purpleColor].CGColor;
                        rectLayer.borderWidth = 2;
                        [self.view.layer addSublayer:rectLayer];

                        [self.rectLayers addObject:rectLayer];
                    }
                });
            }];

在这里存在一个问题,就是摄像头分为前后摄像头,所以在前置摄像头和后置摄像头切换的时候,需要重新配置下

            //需要重新进行配置输出 特别是下面的输出方向
            AVCaptureConnection *captureConnection = [self.avOutput connectionWithMediaType:AVMediaTypeVideo];
            if ([captureConnection isVideoOrientationSupported]) {
                [captureConnection setVideoOrientation:AVCaptureVideoOrientationPortrait];
            }
            // 视频稳定设置
            if ([captureConnection isVideoStabilizationSupported]) {
                captureConnection.preferredVideoStabilizationMode = AVCaptureVideoStabilizationModeAuto;
            }
            // 设置输出图片方向
            captureConnection.videoOrientation = AVCaptureVideoOrientationPortrait;

还有个问题就是在坐标转化的时候,前置摄像头的x轴和UIViewx轴也是相反的,所以这里也需要在进行一次转化

 transFrame.origin.x = self.view.frame.size.width - transFrame.origin.x - transFrame.size.width;

效果如下

动态添加场景

关于动态添加场景,其实就像我们平时用的美颜相机那样,在适当的位置添加些帽子、眼镜等各种搞笑的图片。这里我们还是需要用到AVCapture,并且和动态添加矩形的方法类似,只是在request上和处理方式上不一样
下面我们先看代码

            request = [[VNDetectFaceLandmarksRequest alloc] initWithCompletionHandler:^(VNRequest * _Nonnull request, NSError * _Nullable error) {
                NSArray *vnobservations = request.results;


                for (VNFaceObservation *faceObservation in vnobservations) {


                    VNFaceLandmarks2D *faceLandMarks2D = faceObservation.landmarks;

                    VNFaceLandmarkRegion2D *leftEyefaceLandMarkRegion2D = faceLandMarks2D.leftEye;
                    VNFaceLandmarkRegion2D *rightEyefaceLandMarkRegion2D = faceLandMarks2D.rightEye;

                    dispatch_async(dispatch_get_main_queue(), ^{

//                        //先移除之前的矩形框
//                        [self.rectLayers makeObjectsPerformSelector:@selector(removeFromSuperlayer)];
//
//                        AVCaptureDevicePosition position = [[self.avInput device] position];
//
//                        CGRect transFrame = [[GLTools sharedInstance] convertRect:faceObservation.boundingBox imageSize:self.view.frame.size];
//                        //前置摄像头的时候 记得转换
//                        if (position == AVCaptureDevicePositionFront){
//                            transFrame.origin.x = self.view.frame.size.width - transFrame.origin.x - transFrame.size.width;
//                        }
//
//                        CALayer *rectLayer = [CALayer layer];
//                        rectLayer.frame = transFrame;
//                        rectLayer.borderColor = [UIColor purpleColor].CGColor;
//                        rectLayer.borderWidth = 2;
//                        [self.view.layer addSublayer:rectLayer];
//
//                        [self.rectLayers addObject:rectLayer];

                        AVCaptureDevicePosition position = [[self.avInput device] position];


                        CGPoint sPoints[leftEyefaceLandMarkRegion2D.pointCount + rightEyefaceLandMarkRegion2D.pointCount];

                        NSMutableArray *pointXs = [[NSMutableArray alloc] init];
                        NSMutableArray *pointYs = [[NSMutableArray alloc] init];

                        for (int i = 0; i < leftEyefaceLandMarkRegion2D.pointCount; i ++) {
                            CGPoint point = leftEyefaceLandMarkRegion2D.normalizedPoints[i];

                            CGFloat rectWidth = self.view.bounds.size.width * faceObservation.boundingBox.size.width;
                            CGFloat rectHeight = self.view.bounds.size.height * faceObservation.boundingBox.size.height;

                            CGFloat boundingBoxY = self.view.bounds.size.height * (1 - faceObservation.boundingBox.origin.y - faceObservation.boundingBox.size.height);

                            CGPoint p = CGPointZero;
                            if (position == AVCaptureDevicePositionFront){

                                CGFloat boundingX = self.view.frame.size.width - faceObservation.boundingBox.origin.x * self.view.bounds.size.width - rectWidth;

                                p = CGPointMake(point.x * rectWidth + boundingX, boundingBoxY + (1-point.y) * rectHeight);

                            }else{
                              p = CGPointMake(point.x * rectWidth + faceObservation.boundingBox.origin.x * self.view.bounds.size.width, boundingBoxY + (1-point.y) * rectHeight);
                            }

                            sPoints[i] = p;

                            [pointXs addObject:[NSNumber numberWithFloat:p.x]];
                            [pointYs addObject:[NSNumber numberWithFloat:p.y]];
                        }

                        for (int j = 0; j < rightEyefaceLandMarkRegion2D.pointCount; j ++) {
                            CGPoint point = rightEyefaceLandMarkRegion2D.normalizedPoints[j];

                            CGFloat rectWidth = self.view.bounds.size.width * faceObservation.boundingBox.size.width;
                            CGFloat rectHeight = self.view.bounds.size.height * faceObservation.boundingBox.size.height;

                            CGFloat boundingBoxY = self.view.bounds.size.height * (1 - faceObservation.boundingBox.origin.y - faceObservation.boundingBox.size.height);

                            CGPoint p = CGPointZero;
                            if (position == AVCaptureDevicePositionFront){

                                CGFloat boundingX = self.view.frame.size.width - faceObservation.boundingBox.origin.x * self.view.bounds.size.width - rectWidth;

                                p = CGPointMake(point.x * rectWidth + boundingX, boundingBoxY + (1-point.y) * rectHeight);

                            }else{
                                p = CGPointMake(point.x * rectWidth + faceObservation.boundingBox.origin.x * self.view.bounds.size.width, boundingBoxY + (1-point.y) * rectHeight);
                            }

                            sPoints[leftEyefaceLandMarkRegion2D.pointCount + j] = p;

                            [pointXs addObject:[NSNumber numberWithFloat:p.x]];
                            [pointYs addObject:[NSNumber numberWithFloat:p.y]];
                        }

//                        for (UIView *view in self.view.subviews) {
//                            if ([view isKindOfClass:[UIImageView class]]) {
//                                [view removeFromSuperview];
//                            }
//                        }
//
//                        for (int i = 0; i < rightEyefaceLandMarkRegion2D.pointCount + leftEyefaceLandMarkRegion2D.pointCount; i++) {
//                            CGFloat x = sPoints[i].x;
//                            CGFloat y = sPoints[i].y;
//                            UIImageView *view = [[UIImageView alloc] initWithFrame:CGRectMake(x, y, 2, 2)];
//                            view.backgroundColor = [UIColor redColor];
//                            [self.view addSubview:view];
//                        }

                        //排序 得到最小的x和最大的x
                        NSArray *sortPointXs = [pointXs sortedArrayWithOptions:NSSortStable usingComparator:
                                                ^NSComparisonResult(id  _Nonnull obj1, id  _Nonnull obj2) {
                                                    int value1 = [obj1 floatValue];
                                                    int value2 = [obj2 floatValue];
                                                    if (value1 > value2) {
                                                        return NSOrderedDescending;
                                                    }else if (value1 == value2){
                                                        return NSOrderedSame;
                                                    }else{
                                                        return NSOrderedAscending;
                                                    }
                                                }];

                        NSArray *sortPointYs = [pointYs sortedArrayWithOptions:NSSortStable usingComparator:
                                                ^NSComparisonResult(id  _Nonnull obj1, id  _Nonnull obj2) {
                                                    int value1 = [obj1 floatValue];
                                                    int value2 = [obj2 floatValue];
                                                    if (value1 > value2) {
                                                        return NSOrderedDescending;
                                                    }else if (value1 == value2){
                                                        return NSOrderedSame;
                                                    }else{
                                                        return NSOrderedAscending;
                                                    }
                                                }];

                        UIImage *image =[UIImage imageNamed:@"eyes"];
                        CGFloat imageWidth = [sortPointXs.lastObject floatValue] - [sortPointXs.firstObject floatValue] + 40;
                        CGFloat imageHeight = (imageWidth * image.size.height)/image.size.width;

                        self.glassesImageView.frame = CGRectMake([sortPointXs.firstObject floatValue]-20, [sortPointYs.firstObject floatValue]-5, imageWidth, imageHeight);
                    });
                }
            }];

由于时间关系,代码有点乱,将就将就

先说说思路,我是想动态添加一个眼镜的,所以我必须先得到两个眼睛的位置,然后在计算出两个眼睛的宽高,最后适当的调整眼镜的大小,再动态的添加上去

这里必须要说的一个问题,就是我在实现过程中遇到的—坐标

首先是y坐标,如果还是按照静态图片的那种获取方式,那么得到的结果将会是完全相反的。

faceObservation.boundingBox.origin.y * image.size.height + point.y * rectHeight

这里我做了 一个假设,估计是由于摄像机成像的原因造成的,所以必须反其道而行,于是我如下改造了下

 CGFloat boundingBoxY = self.view.bounds.size.height * (1 - faceObservation.boundingBox.origin.y - faceObservation.boundingBox.size.height);

 p = CGPointMake(point.x * rectWidth + faceObservation.boundingBox.origin.x * self.view.bounds.size.width, boundingBoxY + (1-point.y) * rectHeight);

从中可以看到,所有的point.y都用1减去了,这个试验的过程有点恼火,我还没怎么相通,若有知道的,希望可以告诉我下,当然我也会再研究研究。
再说完y坐标后,就是x坐标了,x坐标在前置摄像头的时候一切正常,然而在切换成后置摄像头的时候,又反了。心累啊,所以没办法,我就只要加判断,然后进行测试,有了如下代码

 CGFloat boundingX = self.view.frame.size.width - faceObservation.boundingBox.origin.x * self.view.bounds.size.width - rectWidth;

最后终于大功告成!
效果就是文章最顶的那个效果

项目文件截图如下

iOS 11之Vision人脸检测_第5张图片

注意

1、在使用过程中,我发现当检测图片的时候内存和cpu的消耗还是很高的,比如我的5s就成功的崩溃过…..
2、图片方向是有要求的….

- (instancetype)initWithCVPixelBuffer:(CVPixelBufferRef)pixelBuffer options:(NSDictionaryid> *)options;

/*!
 @brief initWithCVPixelBuffer:options creates a VNImageRequestHandler to be used for performing requests against the image passed in as buffer.

 @param pixelBuffer A CVPixelBuffer containing the image to be used for performing the requests. The content of the buffer cannot be modified for the lifetime of the VNImageRequestHandler.
 @param orientation The orientation of the image/buffer based on the EXIF specification. For details see kCGImagePropertyOrientation. The value has to be an integer from 1 to 8. This superceeds every other orientation information.
 @param options A dictionary with options specifying auxilary information for the buffer/image like VNImageOptionCameraIntrinsics
 */
- (instancetype)initWithCVPixelBuffer:(CVPixelBufferRef)pixelBuffer orientation:(CGImagePropertyOrientation)orientation options:(NSDictionaryid> *)options;

通过对比上面两个函数,我们可以发现,多了一个CGImagePropertyOrientation类型的参数,没错,这就是指定传入图片的方向,如果指定了方向,而图片方向却不一致,那么恭喜你,检测不出来….这里我用的都是第一个方法,及没有参数,好像默认是up的。
iOS 11之Vision人脸检测

代码地址如下:
http://www.demodashi.com/demo/11783.html

注:本文著作权归作者,由demo大师发表,拒绝转载,转载需要作者授权

你可能感兴趣的:(iOS 11之Vision人脸检测)