转载地址:http://blog.sina.com.cn/s/blog_48f9e3860101i231.html
决定手机摄像头性能的参数有哪些
1、光圈大小,如f2.2 、f2.4 、f2.6
f值越小,光圈越大,图像性能越好。暗光环境下,光圈大的镜头拍的清楚。
2、快门速度,这一点要自己体验
3、像素值其实没用,放大后噪点很多。手机摄像头的感光元件面积很小。
1600w像素数码相机拍摄效果比500w像素的单反相机差的原因是感光元件的面积不同
数码相机是0.4寸的感光元件,而单反的感光元件的面积就可能就有1寸还多了,
感光元件面积大,所以单位像素的利用价值高,图像放大也不会模糊
手机摄像头上的参数:1.3MEGA PIXELS,f=5.0mm 1:2.8表示什么?
130万像素,焦距=5.0毫米,1:2.8 可能是成像比之类的
手机CMOS摄像头是什么
cmos就相当于摄像头的处理芯片也叫做传感器,这个芯片主要用于外界光线后转化为电能,再透过芯片上的模拟转换器将获得的影像讯号转变为数字信号输出。在进行对光感的分析,还原色彩,去除杂质等一系列的运算,使得照片能够看起来非常的清晰。
不过手机上的cmos采用的是最差的芯片,就算是拍照手机也不的cmos芯片也不能和相机里的cmos对比。因为手机的cmos芯片很小,要比相机里的cmos小很多,在对相片的分析和色彩还原,去除杂质等效果都有很大的差异。
CMOS摄像头
CMOS经过加工也可以作为数码摄影中的图像传感器,CMOS传感器也可细分为被动式像素传感器。CMOS传感器具有较高的灵敏度、较短曝光时间和日渐缩小的像素尺寸。由于许多场景的拍摄都是在照明条件很差的情况下进行的,因此拥有较大的动态范围将是十分有益的。
现在手机的摄像头都是CMOS摄像头,很少采用其他的传感器。因为CMOS的摄像头价格低廉,成像一般。对于手机来说,CMOS传感器已经够用了。
手机摄像头
2000年,夏普J-SH04成为世界上第一款置入摄像头的手机;2002年,诺基亚7650作为国内第一款拍照手机上市;2003年,又是夏普,拥有百万级像素的拍照手机夏普j-sh53问世……拍照功能已逐渐成为手机上的一项标配,但是如何选择手机摄像头呢?
1、主要结构
首先了解摄像头的主要结构和工作原理:
光线——>镜头——>图像传感器(即感光器,将光转化为数字信号)——>数字信号处理芯片(即主芯片,对数字信号进行优化处理,并进行传输和保存)——>图像/视频
镜头
摄像头镜头由透镜结构组成,镜头主要决定画面清晰度(画面清透度、光线、远近景)、图像显示范围、画面处理速度,同时影响硬件支持的最高像素。
摄像头镜头品质差异主要取决于镜头的材质和处理工艺。诺基亚部分手机就常自称是通过卡尔蔡司认证的镜头,有兴趣的朋友可以自己去查,下面只讲两个主要衡量指标:
材质:镜头从材质上分塑胶透镜(P)和玻璃透镜(G)两种,可以通过多种组合方式形成最后的镜头,常见的组合有:1P、2P、1G1P、1G2P、2G2P、2G3P、4G、5G(2P就是2片塑胶,2G2P就是2片玻璃2片塑胶,其它的类似)。透镜越多成像效果越好;玻璃透镜比塑胶的效果好,价格也更贵;加了镀膜玻璃的则更好,可以增加通光量,减少反光,使成像清晰,画质明亮鲜艳。
透光度(光圈系数):透光度越强成像效果越好,透光度有标准衡量数值:f1,f1.4,f2,f2.8,f4,f5.6,f8,f11等,数值越低越好。
图像传感器(SENSOR)
摄像头图像传感器(SENSOR)将光转化为数字信号,并将信号传送给数字信号处理芯片(DSP)。图像传感器决定产品的画面清晰度(画面清透度、光线、噪点多少)、画面边缘处理能力、弱光成像补偿能力;影响硬件支持的最高像素、画面处理速度。我们常说的摄像头像素也主要由图像传感器决定。
目前市面上常见的传感器材质分为CCD(电荷耦合器件)和CMOS(互补金属氧化物半导体)两种:
CCD的优点是灵敏度高,噪音小,信噪比大,但是生产工艺复杂、成本高、功耗高;
CMOS的优点是集成度高、功耗低(不到CCD的1/3)、成本低,但是信噪比较大、灵敏度较低、对光源要求高。
一般认为CCD的成像效果比CMOS好,但是随着CMOS的改进和其他影像技术的弥补(如自动亮度、白平衡控制,色饱和度、对比度、边缘增强等),两者实际效果相差并不明显。另外最近爆出国外已研发出量子膜图像传感技术,性能比CCD和CMOS提升了4倍,但相信短时间内不会用在手机上。
数字信号处理芯片(DSP)
数字信号处理芯片(DSP)主要对传感器传送过来的数字信号进行优化,转化为图像格式并通过接口传输给存储或显示设备。处理芯片的好坏,直接决定画面品质(如色彩饱和度、清晰度)与流畅度。
2、主要参数
介绍了摄像头的主要结构,再来看主要衡量的参数。
分辨率(像素)
相信分辨率是大家最熟悉的参数之一了。分辨率主要由图像传感器决定,一般分辨率越高,图像就越细腻,效果也越好,但图像所占存储空间更大。另外,通常所说的摄像头像素是拍照模式下的最大像素,摄影(拍视频)时的像素通常会比较小,例如N97摄像头有500W像素,但摄影模式下的最大分辨率只有640 x480。
对手机摄像头分辨率进行说明时,常常会使用图像解析度的专用名词(如CIF,VGA等)来表示分辨率,下面是它们的对应关系(像素=分辨率长宽数值相乘,例如640X480=307200,也就是30W像素):
简称 (代号) 分辨率 像素
subQCIF : 128 x 96
QCIF : 176 X 144
CGA : 320 x 200
Quarter-VGA: 320 x 240
CIF : 352 x 288 10W
EGA : 640 x 350
VGA : 640 x 480 30W
SVGA : 800 x 600
XGA : 1024 x 768
XGA-W : 1280 x 768
QVGA : 1280 x 960 120W
SXGA : 1280 x 1024
SXGA+ : 1400 x 1050
SXGA-W : 1600 x 1024
UGA : 1600 x 1200
HDTV : 1920 x 1080 200W
UXGA : 1900 x 1200
UXGA-W : 1920 x 1200
QXGA : 2048 x 1536 320W
QSXGA : 2560 x 2048 500W+
QUXGA : 3200 x 2400 700W+
QUXGA-W : 3840 x 2400 900W+
传输速率(帧数)
该参数主要由数字信号处理芯片(DSP)决定,该参数主要对连拍和摄像有影响。一般传输速率越高,视频越流畅。常见的传输速率有15fps,30fps,60fps,120fps等。(fps:帧/秒)。
传输速率与图像的分辨率有关,图像分辨率越低,传输速率越高,例如某摄像头在CIF(352*288)分辨率下可实现30fps传输速率,则在VGA(640*480)分辨率下就只有10fps左右,因此当商家说传输速率时一定要清楚对应的分辨率。一般30fps的流畅度已经足够了,关键看此时对应的分辨率有多高。
3、其他技术
现在手机摄像头上还能实现自动对焦、防抖动、白平衡、亮度调节、饱和度调节等功能,但目前大部分手机主要通过ISP(图像信号处理器,可认为是DSP的一部分)对图像进行相应的算法处理实现的,实现效果与算法有关。虽说这些能力能提高图像处理效果,但也可能由于计算太多导致拍摄时的速度降低。
还有一项技术是变焦,变焦分为光学变焦和数码变焦,两种变焦都可以使图像放大,但光学变焦在放大的同时不影响图像质量,光学变焦倍数越高越适合做望远镜;而数码变焦也是通过算法实现,在放大图像的同时会使图像质量降低。因此衡量摄像头变焦能力的是光学变焦倍数而不是数码变焦,而目前大部分手机摄像头都是数码变焦。
作为手机新型的拍摄功能,内置的数码相机功能与我们平时所见到的低端的(10万-130万像素)数码相机相同。与传统相机相比,传统相机使用“胶卷”作为其记录信息的载体,而数码摄像头的“胶卷”就是其成像感光器件,是数码拍摄的心脏。感光器是摄像头的核心,也是最关键的技术。
摄像头按结构来分,有内置和外接之分,但其基本原理是一样的。
按照其采用的感光器件来分,有CCD和CMOS之分:
CCD(Charge Coupled Device,电荷耦合组件)使用一种高感光度的半导体材料制成,能把光线转变成电荷,通过模数转换器芯片转换成数字信号,数字信号经过压缩以后由相机内部的闪速存储器或内置硬盘卡保存,因而可以轻而易举地把数据传输给计算机,并借助于计算机的处理手段,根据需要和想像来修改图像。CCD由许多感光单位组成,当CCD表面受到光线照射时,每个感光单位会将电荷反映在组件上,所有的感光单位所产生的信号加在一起,就构成了一幅完整的画面。它就像传统相机的底片一样的感光系统,是感应光线的电路装置,你可以将它想象成一颗颗微小的感应粒子,铺满在光学镜头后方,当光线与图像从镜头透过、投射到CCD表面时, CCD就会产生电流,将感应到的内容转换成数码资料储存起来。CCD像素数目越多、单一像素尺寸越大,收集到的图像就会越清晰。因此,尽管CCD数目并不是决定图像品质的唯一重点,我们仍然可以把它当成相机等级的重要判准之一。目前扫描机、摄录放一体机、数码照相机多数配备CCD。
CCD经过长达35年的发展,大致的形状和运作方式都已经定型。CCD 的组成主要是由一个类似马赛克的网格、聚光镜片以及垫于最底下的电子线路矩阵所组成。目前有能力生产 CCD 的公司分别为:SONY、Philps、Kodak、Matsushita、Fuji和Sharp,大半是日本厂商。
CMOS(Complementary etal-Oxide Semiconductor,附加金属氧化物半导体组件)和CCD一样同为在数码相机中可记录光线变化的半导体。CMOS的制造技术和一般计算机芯片没什么差别,主要是利用硅和锗这两种元素所做成的半导体,使其在CMOS上共存着带N(带–电)和 P(带+电)级的半导体,这两个互补效应所产生的电流即可被处理芯片纪录和解读成影像。然而,CMOS的缺点就是太容易出现杂点,这主要是因为早期的设计使CMOS在处理快速变化的影像时,由于电流变化过于频繁而会产生过热的现象。
CCD和CMOS各自的利弊,我们可以从技术的角度来比较两者主要存在的区别:
信息读取方式不同。CCD传感器存储的电荷信息需在同步信号控制下一位一位的实施转移后读取,电荷信息转移和读取输出需要有时钟控制电路和三组不同的电源相配合,整个电路较为复杂。CMOS传感器经光电转换后直接产生电流(或电压)信号,信号读取十分简单。
速度有所差别。CCD传感器需在同步时钟的控制下以行为单位一位一位的输出信息,速度较慢;而CMOS传感器采集光信号的同时就可以取出电信号,还能同时处理各单元的图象信息,速度比CCD快很多。
电源及耗电量。CCD传感器电荷耦合器大多需要三组电源供电,耗电量较大;CMOS传感器只需使用一个电源,耗电量非常小,仅为CCD电荷耦合器的1/8到1/10,CMOS光电传感器在节能方面具有很大优势。
成像质量。CCD传感器制作技术起步较早,技术相对成熟,采用PN结合二氧化硅隔离层隔离噪声,成像质量相对CMOS传感器有一定优势。由于CMOS传感器集成度高,光电传感元件与电路之间距离很近,相互之间的光、电、磁干扰较为严重,噪声对图象质量影响很大。
在相同分辨率下,CMOS价格比CCD便宜,但是CMOS器件产生的图像质量相比CCD来说要低一些。到目前为止,市面上绝大多数的消费级别以及高端数码相机都使用CCD作为感应器;CMOS感应器则作为低端产品应用于一些摄像头上。是否具有CCD感应器一度成为人们判断数码相机档次的标准之一。而由于 CMOS的制造成本和功耗都要低于CCD不少,所以很多手机生产厂商采用的都是CMOS镜头。现在,市面上大多数手机都采用的是CMOS摄像头,少数也采用了CCD摄像头。
连拍原理
连拍功能(continuous shooting)是通过节约数据传输时间来捕捉摄影时机。连拍模式通过将数据装入数码相机内部的高速存储器(高速缓存),而不是向存储卡传输数据,可以在短时间内连续拍摄多张照片。由于数码相机拍摄要经过光电转换,A/D转换及媒体记录等过程,其中无论转换还是记录都需要花费时间,特别是记录花费时间较多。因此,所有数码相机的连拍速度都不很快。
连拍一般以帧为计算单位,好像电影胶卷一样,每一帧代表一个画面,每秒能捕捉的帧数越多,连拍功能越快。目前,数码相机中最快的连拍速度为7帧/秒,而且连拍3秒钟后必须再过几秒才能继续拍摄。当然,连拍速度对于摄影记者和体育摄影受好者是必须注意的指标,而普通摄影场合可以不必考虑。一般情况下,连拍捕捉的照片,分辨率和质量都会有所减少。有些数码相机在连拍功能上可以选择,拍摄分辨率较小的照片,连拍速度可以加快,反之,分辨率大的照片的连拍速度会相对减缓。
通过连续快拍模式,只须轻按按钮,即可连续拍摄,将连续动作生动地记录下来。
光学变焦和数码变焦原理
光学变焦(Optical Zoom)是通过镜头、物体和焦点三方的位置发生变化而产生的。当成像面在水平方向运动的时候,如下图,视觉和焦距就会发生变化,更远的景物变得更清晰,让人感觉像物体递进的感觉。
显而易见,要改变视角必然有两种办法,一种是改变镜头的焦距。用摄影的话来说,这就是光学变焦。通过改变变焦镜头中的各镜片的相对位置来改变镜头的焦距。另一种就是改变成像面的大小,即成像面的对角线长短在目前的数码摄影中,这就叫做数码变焦。实际上数码变焦并没有改变镜头的焦距,只是通过改变成像面对角线的角度来改变视角,从而产生了“相当于”镜头焦距变化的效果。
所以我们看到,一些镜头越长的数码相机,内部的镜片和感光器移动空间更大,所以变焦倍数也更大。我们看到市面上的一些超薄型数码相机,一般没有光学变焦功能,因为其机身内根部不允许感光器件的移动,而像索尼F828、富士S7000这些“长镜头”的数码相机,光学变焦功能达到5、6倍。
数码变焦(Digital Zoom)也称为数字变焦,数码变焦是通过数码相机内的处理器,把图片内的每个象素面积增大,从而达到放大目的。这种手法如同用图像处理软件把图片的面积改大,不过程序在数码相机内进行,把原来影像感应器上的一部份像素使用“插值”处理手段做放大,将影像感应器上的像素用插值算法将画面放大到整个画面。
与光学变焦不同,数码变焦是在感光器件垂直方向向上的变化,而给人以变焦效果的。在感光器件上的面积越小,那么视觉上就会让用户只看见景物的局部。但是由于焦距没有变化,所以,图像质量是相对于正常情况下较差。
通过数码变焦,拍摄的景物放大了,但它的清晰度会有一定程度的下降,所以数码变焦并没有太大的实际意义。因为太大的数码变焦会使图像严重受损,有时候甚至因为放大倍数太高,而分不清所拍摄的画面。
手机拍摄4个小技巧?
拍摄手机的像素一般不高。但只要用点心思,还是可以用手机拍出好照片的。
法则一用“三等分法”构图。在实际摄影构图中将主体景物与中心稍错开,并注意主体与其它物体之间的呼应。这样拍摄的照片主体景物鲜明、突出,不会模糊不清。
法则二侧光最能突出质感。一般情况下,从侧面射入的光线能更好地突出物体的质感,因此要尽量利用侧面光。逆光或者侧逆光时,可以考虑用物品进行遮挡,实在不行就用手在摄像头旁遮一下,缓解逆光的影响。在强光下拍摄也需要注意,千万不要用手机镜头对着强光拍摄。
法则三按键后不宜马上转动手机。手机拍照延迟现象一般比较明显,若使用外置摄像头的手机拍照,这种延迟现象会更明显。如果在按下快门的一瞬间手抖动了,拍出的照片会发虚或者模糊不清。所以,切记不要按下拍摄键后马上转动相机。
法则四尽量不用数码变焦拍摄。如果用数码变焦来拍照,会减弱图像的清晰度,效果还不如不用数码变焦拍摄的好。例如,一张使用数码变焦拍摄、分辨率为640×480的照片,实际分辨率可能只有320×240,在计算机上看时,图像不是变小就是变得模糊。
手机摄像头参数配置时的问题
1。很多时候其实是鬼影,画面颜色乱得鬼画图书一样(但颜色显示不正常、并带有较大的色块光斑等等现象),不专业的同志往往把这也叫花屏。这个原因主要是数据线上的信号不对,比如D[5]跟GND短路,或者断开。越是高位的信号线出问题,鬼影现象将越严重,低位信号(如D[1]、D[0])则对画面影响不大,所以,在十位输出格式中,往往为了兼容8 位的IO口,把低两位去掉,只要高8位。如何理解高位信号线的重要性?大家知道8位信号可以表示256个不同的级别,比如亮度值Y的高低级别、或者色度值 U/V的强度级别。假如D[7:0]=10000000代表的是128亮度值,那么显示出来就是灰色,但是如果D[7]断开、或者短路,那么CPU得到的值将是00000000,显示出黑色,差别就大咯。同样对于色度信号,也将出现颜色错误。所以出现这种情况,先查查信号通路(一般是Connector连接不良居多、然后是Sensor焊接绑定不良次之),然后再看驱动程序是否有弄错
2。图像反色,在RGB颜色系统中就是红绿蓝三个颜色的错乱,在YUV系统中就是亮度信号跟色度信号的错乱,当然也有两个色度信号之间错乱的。举例说明,一个YUV422格式的Camera,其输出的有效Pixel一般是Y0+U0)、(Y1+V0)、(Y2+u1)、(Y3+V1)….,如果因为Camera的输出时序错位(比如 Camera输出的是(U0+Y0)、(V0+Y1)….),而CPU还傻不拉几地认为是前面一种标准时序,那么就出现每个象素点的亮度信号跟色度信号反了,对于构建画面清晰最为重要的亮度信号Y被拉去作为U(或叫蓝色偏量Cb),那么就会出现高亮度的地方呈现绿色,低亮度的区域呈现红色,而且画面整体亮度也大大偏低。其他情况大体相似,可以类推之。不过出现画面反色一般都表现为画面大红大绿的情况。对这种情况,一般先看看送给Sensor的参数中有没有设错相关寄存器的值,或者检查CPU这边驱动程序的设置是否跟送出来的数据格式一致。
3。画面条纹,而且一般都是彩色的横条纹。这种彩色的条纹是固定在某些行,或者不断闪现在不同的行。从单个行数据来看,出错的原因跟上面第2条一样,都是由数据错位引起。这次拿RGB Raw数据格式来说,RGB Raw输出一般是第一行/第二行:RGRG…/GBGB…,如果第一行的数据R没有被采样到,那么CPU采集到的数据实际上就是GRGR…. 0/GBGB….(假设此CPU对一行数据中不足的位用0补齐),但是它又按照前面那个标准的数据排列来进行颜色插补的工作(对颜色插补不明白的等以后有时间再讨论),如果照偏绿色的背景(R的分量很小,G的分量很大),但是由于采样错位,CPU把较大分量G的值当成是第一个象素R的值,本来弱小的R 分量就这样莫名其妙的被大大地提升了,所以显示保存图片的时候这一行将整体的偏红色,了解颜色插补的同志应该还会想到,即使第二行没有错位,也会受到一定的影响,呈现出偏红的迹象。对于这样的问题,不像第2那样是整个画面出现错位,而只是某些行数据出现,这一般是由元器件制造时的差别引起的,Sensor 生产商不能保证每个Sensor的性能都一样,也不能保证每行的数据时序都分毫不差。当然也跟信号受到外部的影响有关,比如行同步信号HREF受到外部影响,上升沿长,将可能引起第一个PCLK丢失。再假如PCLK信号如果受到干扰、或者驱动能力不够,也有可能导致某些象素的丢失,从而一行数据的排列都会错位,出现画面的条纹现象。所以在设计硬件或者调试驱动程序的时候,良好的信号同步策略,以及设置更好的信号容差范围将是系统长期稳定性的基础
4。画面噪点,画面过多的噪点也往往会被说成是画面花屏,可能从直观理解,噪点这种“花屏”才真叫花,照出来满脸的麻子,而且是花花绿绿,姹紫嫣红啊。噪点我放到最后才讲是因为这个问题嘛,现在已经越来越不是问题了。随着CMOS技术的进步,已经ISP的集成,Sensor中降噪的能力越来越强,除了低照度(几个LUX)下的噪点还很难消除外,其它时候已经可以通过颜色矫正、自动增益调节、自动Gmma、黑白点矫正等ISP功能基本消除掉。如果是用RGB Raw数据格式的兄弟可是要费一番功夫了,调试驱动的时候要充分利用CPU集成的一些ISP功能,消除掉那些红鬼蓝鬼。画面噪点主要跟Sensor的设计制造技术有关,我们往往也只能望而兴叹,但是如果Boss比较大方、应用于高端机型的,还是得买贵的Sensor啊,现在这个市场啊,已经挤得水泄不通了,价格也不会不靠谱,基本上是一分钱一分货了。
再转载一个网友的观点:
本人从事cellphone以及PC camera 的应用工作,我来谈谈我的一些看法,不足的地方请补充!
主要是CMOS IMAGE SENSOR的应用,先说说整个模块!
构成:
整个系统由三部分构成:图像采集模块、图像处理模块和图像传输模块。
1图像采集模块:
图像的采集过程是把光转化为电信号;首先,光通过镜头进入sensor,有sensor里的photodiode转化为电压电流,然后经过AMP放大,再有ADC转化为数字信号;
2图像处理模块 :
该过程主要对sensor出来的数字信号进行处理,称ISP,image signal process
主要包括:lens shading ; Gamma correction;color interpolation;contrast;saturation;AE;AWB;color correction;bad pixel correction等下面主要谈谈AE(自动曝光)与AWB(自动白平衡)
运动目标检测与跟踪、目标的识别与提取等基于图像内容的处理,对图像质量要求较高。影响成像质量的两个重要因素为曝光和白平衡:人眼对外部环境的明暗变化非常敏感,在强光环境下,瞳孔缩小,使得景物不那么刺眼;而光线较弱时,瞳孔扩大,使景物尽可能地变清楚。这在成像中,称为曝光。当外界光线较弱时, CMOS成像芯片工作电流较小,所成图像偏暗,这时要适当增加曝光时间进行背光补偿;光线充足或较强时,要适当减少曝光时间,防止曝光过度,图像发白。改善成像质量,仅靠调节曝光时间是不够的。因为物体颜色会随照射光线的颜色发生改变,在不同的光线场合图像有不同的色温。这就是白平衡问题。传统光学相机或摄像机通过给镜头加滤镜消除图像的偏色现象。对于CMOS成像芯片,可以通过调整RGB三基色的电子增益解决白平衡问题。
本系统的自动曝光控制和白平衡处理实现方法如下:
采集一帧RGB原始图像,先计算出整幅图像亮度的均值m(Y);然后对图像做直方图均衡化,再计算出此时图像的亮度均值并作为一个阈值Yt。将m (Y)与Yt进行比较,如果m(Y) < Yt,则调大sensor的INT(Integration Time)寄存器的值以增加曝光时间;反之,减小曝光时间。白平衡的调节与此相似,根据原始图像与均衡化后的Cr和Cb的均值,通过sensor的RCG (Red Color Gain)、BCG(Blue Color Gain)调节红色、蓝色通道的增益。YCrCb和RGB的转换关系式为:
Y=0.59G+0.31R+0.11B
Cr=0.713×(R-Y)
Cb=0.564×(B-Y)
其中,Y是亮度分量,Cr和Cb则是色差分量。
sensor的曝光时间范围为0~(224-1)个像素时钟周期,即0~[email protected];增益范围一般为30~63。试验结果表明,经过5~10次的迭代就能取得较为理想的效果。
1 手机摄像头概述
1.1 手机摄像头概述
手机的数码相机功能指的是手机是否可以通过内置或是外接的数码相机进行拍摄静态图片或短片拍摄,作为手机的一项新的附加功能,手机的数码相机功能得到了迅速的发展。
手机摄像头分为内置与外置,内置摄像头是指摄像头在手机内部,更方便。外置手机通过数据线或者手机下部接口与数码相机相连,来完成数码相机的一切拍摄功能。
外置数码相机的优点在于可以减轻手机的重量,而且外置数码相机重量轻,携带方便,使用方法简单。
处于发展阶段的手机的数码相机的性能应该也处于初级阶段,带有光学变焦的手机目前国内销售的还没有这个功能,不过相信随着手机数码相机功能的发展,带有光学变焦的手机也会逐渐上市,但大部分都拥有数码变焦功能。
除此之外,目前手机的数码相机功能主要包括拍摄静态图像,连拍功能,短片拍摄,镜头可旋转,自动白平衡,内置闪光灯等等。手机的拍摄功能是与其屏幕材质、屏幕的分辨率、摄像头像素、摄像头材质有直接关系。
1.2 Camera分类
Camera一般分为Digital camera 数字式与Digital Still Cameras模拟式。
1.2.1 Digital camera 数字式
数字摄像头是直接将摄像单元和视频捕捉单元集成在一起,然后通过串、并口或者USB接口连接到HOST SYSTEM上。现在CAMERA市场上的摄像头基本以数字摄像头为主,而数字摄像头中又以使用新型数据传输接口的USB数字摄像头为主(独立),在手机上主要是直接通过IO (BTB,USB,MINI USB…)与HOST SYSTEM连接,经过HOST SYSTEM的编辑后以数字信号输出到DISPLAY上显示。目前CAMERA市场上主流的CAMERA全DIGITAL
CAMERA。
1.2.2 Simulant camera 模拟式
模拟摄像头是将视频采集设备产生的模拟视频信号转换成数字信号,进而将其储存到SYSTEM MEMORY里。模拟摄像头捕捉到的视频信号必须经过特定的视频捕捉卡将模拟信号转换成数字模式,并加以压缩后才可以转换到HOST SYSTEM上运用,经HOST SYSTEM的编辑,通过DISPLAY显示和输出。
1.3 Camera结构
1.3.1 CCD结构
分三层:LENS、分色滤色片、感光层
第1层LENS:CAMERA的成像关键在于SENSOR,为了扩大CCD的采光率必须扩大单一象素的受光面积,在提高采光率的同时会导致画面质量下降。LENS就是相当于在SENSOR前面增加一副眼镜,SENSOR的采光率就不是由SENSOR的开口面积决定而是由LENS的表面积决定。
第2层分色滤色片:
目前分色滤色片有两种分色方法:RGB原色分色法,就是三原色分色法,几乎所有的人类眼睛可以识别的颜色都可以通过R.G.B来组成,RGB就是通过这三个通道的颜色调节而成。
CMYK补色分色法,由四个通道的颜色配合而成,分别是青(C)、洋红(M)、黄(Y)、黑(K),但是调节出来的颜色不如RGB的颜色多。
第3层感光层SENSOR
CCD的第三层是SENSOR,SENSOR主要是将穿过滤色层的光源转换成电子信号,并将信号传送到影像处理芯片(DSP),将影像还原。
1.3.2 LENS(镜头)
一般CAMERA的镜头结构是有几片透镜组成,分有塑胶透镜(PLASTIC)和玻璃透镜(GLASS),通常CAMERA用的镜头结构有:1P,2P,1G1P,1G3P,2G2P,4G等。透镜越多,成本越高;玻璃透镜比塑胶透镜贵,但是玻璃透镜的成像效果比塑胶透镜的成像效果要好。目前市场上针对MOBILE PHONE配置的CAMERA以1G3P(1片玻璃透镜和3片塑胶透镜组成)为主,目的是降低成本。
1.3.3 SENSOR(图象传感器)
图像传感器(SENSOR)是一种半导体芯片,其表面包含有几十万到几百万的光电二极管。光电二极管受到光照射时,就会产生电荷。目前的SENSOR类型有两种:CCD(Charge Couple Device)电荷耦合器件,CMOS(Complementary Metal Oxide Semiconductor)互补金属氧化物半导体
1.3.4 A/D转换器
A/D转换器即ADC(Analog Digital Converter 模拟数字转换器)ADC的两个重要指标是转换速度和量化精度,由于CAMERA SYSTEM中高分辨率图象的象素量庞大,因此对速度转换器的要求很高。同时量化精度对应的ADC转换器将每一个象素的亮度和色彩值量化为若
干的等级,这个等级就是CAMERA的色彩深度。由于CMOS已经具备数字化传输接口,所以不需要A/D4.0 数字信号处理芯片(DSP)数字信号处理芯片DSP(DIGITAL SIGNAL PROCESSING)功能:主要是通过一系列复杂的数学算法运算,对数字图像信号参数进行优化处理,并把处理后的信号通过USB等接口传到PC等设备。
1.3.5 DSP结构框架
1. ISP(image signal processor)(镜像信号处理器)
2. JPEG encoder(JPEG图像解码器)
3. USB device controller(USB设备控制器)
1.4 Camera技术指标
1.4.1 图像压缩方式JPEG
(joint photographic expert group)静态图像压缩方式。一种有损图像的压缩方式。压缩比越大,图像质量也就越差。当图像精度要求不高存储空间有限时,可以选择这种格式。目前大部分数码相机都使用JPEG格式。
1.4.2 图像噪音
指的是图像中的杂点干扰,表现为图像中有固定的彩色杂点。
1.4.3 视角
与人的眼睛成像是相似原理,简单说就是成像范围。
1.4.4 白平衡处理技术(AWB)
要求在不同色温环境下,照白色的物体,屏幕中的图像应也是白色的。色温表示光谱成份,光的颜色。色温低表示长波光成分多。当色温改变时,光源中三基色(红、绿、蓝)的比例会发生变化,需要调节三基色的比例来达到彩色的平衡,这就是白平衡调节的实际。
图象传感器的图象数据被读取后,系统将对其进行针对镜头的边缘畸变的运算修正,然后经过坏像处理后被系统送进去进行白平衡处理(在不同的环境光照下,人类的眼睛可以把一些“白”色的物体都看成白色,是因为人眼进行了修正。但是SENSOR没有这种功能,因此需要对SENSOR输出的信号进行一定的修正,这就是白平衡处理技术)。
1.4.5 电源
好的摄像头内部电源也是保证摄像头稳定工作的一个因素。
1.4.6 彩色深度(色彩位数)
反映对色彩的识别能力和成像的色彩表现能力,就是用多少位的二进制数字来记录三种原色。实际就是A/D转换器的量化精度,是指将信号分成多少个等级,常用色彩位数(bit)表示。彩色深度越高,获得的影像色彩就越艳丽动人。非专业的SENSOR一般是24位;专业型SENSOR至少是36位。24位的SENSOR,感光单元能记录的光亮度值最多有2^8=256级,每一种原色用一个8位的二进制数字来记录,最多记录的色彩是256×256×256约16,77万种。
36位的SENSOR,感光单元能记录的光亮度值最多有2^12=4096级,每一种原色用一个12位的二进制数字来记录,最多记录的色彩是4096×4096×4096约68.7亿种。
1.4.7 输出/输入接口(IO)
串行接口(RS232/422):传输速率慢,为115kbit/s。
并行接口(PP):速率可以达到1Mbit/s。
红外接口(IrDA):速率也是115kbit/s,一般笔记本电脑有此接口。
通用串行总线USB:即插即用的接口标准,支持热插拔。USB1.1速率可12Mbit/s,USB2.0可达480bit/s。
IEEE1394(火线)接口(亦称ilink):其传输速率可达100M~400Mbit/s。
1.4.8 图像格式(image Format/ Color space)
RGB24,I420是目前最常用的两种图像格式。RGB24:表示R、G、B三种颜色各8bit,最多可表现色。
I420:YUV格式之一。
其它格式有: RGB565,RGB444,YUV4:2:2等。
1.4.9 分辨率(Resolution)
所谓分辨率就是指画面的解析度,由多少象素构成的数值越大,图像也就越清晰。分辨率不仅与显示尺寸有关,还会受到显像管点距、视频带宽等因素的影响。我们通常所看到的分辨率都以乘法形式表现的,比如1024*768,其中的1024表示屏幕上水平方向显示的点数,768表示垂直方向的点数。
SXGA(1280 x1024)又称130万像素
XGA(1024 x768)又称80万像素
SVGA(800 x600)又称50万像素
VGA(640x480)又称30万像素(35万是指648X488)
CIF(352x288) 又称10万像素
SIF/QVGA(320x240)
QCIF(176x144)
QSIF/QQVGA(160x120)
1.5 Camera工作原理
景物(SCE)通过镜头(LENS)生成的光学图像投射到图像传感器(Sensor)
表面上,然后转为电信号,经过A/D(模数转换)转换后变为数字图像信号,再送到数字信号处理芯片(DSP)中加工处理,再通过IO接口传输到CPU中处理,通过DISPLAY就可以看到图像了。
1.6 Camera常用术语解释
1.6.1 像素
数码相机的像素数包括有效像素(Effective Pixels)和最大像素(Maximum Pixels)。与最大像素不同的是有效像素数是指真正参与感光成像的像素值,而最高像素的数值是感光器件的真实像素,这个数据通常包含了感光器件的非成像部分,而有效像素是在镜头变焦倍率下所换算出来的值。
对于手机的数码相机像素,目前只能处于初级发展阶段,像素数并不很高,大都在30万– 200万像素之间。数码相机的像素数越大,所拍摄的静态图像的分辨率也越大,相应的一张图片所占用的空间也会增大。
1.6.2 有效像素
有效像素数英文名称为Effective Pixels。与最大像素不同,有效像素数是指真正参与感光成像的像素值。最高像素的数值是感光器件的真实像素,这个数据通常包含了感光器件的非成像部分,而有效像素是在镜头变焦倍率下所换算出来的值。
数码图片的储存方式一般以像素(Pixel)为单位,每个象素是数码图片里面积最小的单位。像素越大,图片的面积越大。要增加一个图片的面积大小,如果没有更多的光进入感光器件,唯一的办法就是把像素的面积增大,这样一来,可能会影响图片的锐力度和清晰度。所以,在像素面积不变的情况下,数码相机能获得最大的图片像素,即为有效像素。
1.6.3 最大像素
最大像素英文名称为Maximum Pixels,所谓的最大像素是经过插值运算后获得的。插值运算通过设在数码相机内部的DSP芯片,在需要放大图像时用最临近法插值、线性插值等运算方法,在图像内添加图像放大后所需要增加的像素。插值运算后获得的图像质量不能够与真正感光成像的图像相比。以最大像素拍摄的图片清晰度比不上以有效像素拍摄的。
1.6.4 传感器
作为手机新型的拍摄功能,内置的数码相机功能与我们平时所见到的低端的(30万–200万像素)数码相机相同。与传统相机相比,传统相机使用“胶卷”作为其记录信息的载体,而数码相机的“胶卷”就是其成像感光器件,而且是与相机一体的,是数码相机的心脏。感光器是数码相机的核心,也是最关键的技术。目前手机数码相机的核心成像部件有两种:一种是广泛使用的CCD(电荷藕合)元件;另一种是CMOS(互补金属氧化物导体)器件。
1.6.5 CCD
电荷藕合器件图像传感器CCD(Charge Coupled Device),它使用一种高感光度的半导体材料制成,能把光线转变成电荷,通过模数转换器芯片转换成数字信号,数字信号经过压缩以后由相机内部的闪速存储器或内置硬盘卡保存,因而可以轻而易举地把数据传输给计算机,并借助于计算机的处理手段,根据需要和想像来修改图像。
CCD由许多感光单位组成,通常以百万像素为单位。当CCD表面受到光线照射时,每个感光单位会将电荷反映在组件上,所有的感光单位所产生的信号加在一起,就构成了一幅完整的画面。CCD和传统底片相比,CCD更接近于人眼对视觉的工作方式。只不过,人眼的视网膜是由负责光强度感应的杆细胞和色彩感应的锥细胞,分工合作组成视觉感应。
CCD经过长达35年的发展,大致的形状和运作方式都已经定型。CCD的组成主要是由一个类似马赛克的网格、聚光镜片以及垫于最底下的电子线路矩阵所组成。目前有能力生产CCD的公司分别为:SONY、Philps、Kodak、Matsushita、Fuji和Sharp,大半是日本厂商。
1.6.6 CMOS
互补性氧化金属半导体CMOS(Complementary Metal-Oxide Semiconductor)和CCD一样同为在数码相机中可记录光线变化的半导体。CMOS的制造技术和一般计算机芯片没什么差别,主要是利用硅和锗这两种元素所做成的半导体,使其在CMOS上共存着带N(带–电)和P(带+电)级的半导体,这两个互补效应所产生的电流即可被处理芯片纪录和解读成影像。然而,CMOS的缺点就是太容易出现杂点,这主要是因为早期的设计使CMOS在处理快速变化的影像时,由于电流变化过于频繁而会产生过热的现象。
1.6.7 CCM
CCM其实就是CMOS镜头,只是CCM的画质比CMOS高一点,拍照时感应速度也较快,但以照片品质来说还是逊色于CCD镜头,在实际拍摄中也可以感觉出来,取景速度非常快,就算迅速移动手机摄像头时,屏幕都可以迅速显示所捕抓的画面,过程非常流畅,几乎没有什么延迟。
1.6.8 CCD与CMOS的不同
由两种感光器件的工作原理可以看出,CCD的优势在于成像质量好,但是由于制造工艺复杂,只有少数的厂商能够掌握,所以导致制造成本居高不下,特别是大型CCD,价格非常高昂。
在相同分辨率下,CMOS价格比CCD便宜,但是CMOS器件产生的图像质量相比CCD来说要低一些。到目前为止,市面上绝大多数的消费级别以及高端数码相机都使用CCD作为感应器;
CMOS感应器则作为低端产品应用于一些摄像头上,若有哪家摄像头厂商生产的摄想头使用CCD感应器,厂商一定会不遗余力地以其作为卖点大肆宣传,甚至冠以“数码相机”之名。一时间,是否具有CCD感应器变成了人们判断数码相机档次的标准之一。
CMOS影像传感器的优点之一是电源消耗量比CCD低,CCD为提供优异的影像品质,付出代价即是较高的电源消耗量,为使电荷传输顺畅,噪声降低,需由高压差改善传输效果。但CMOS影像传感器将每一画素的电荷转换成电压,读取前便将其放大,利用3.3V的电源即可驱动,电源消耗量比CCD低。
CMOS影像传感器的另一优点,是与周边电路的整合性高,可将ADC与讯号处理器整合在一起,使体积大幅缩小,例如,CMOS影像传感器只需一组电源,CCD却需三或四组电源,由于ADC与讯号处理器的制程与CCD不同,要缩小CCD套件的体积很困难。
但目前CMOS影像传感器首要解决的问题就是降低噪声的产生,未来CMOS影像传感器是否可以改变长久以来被CCD压抑的宿命,往后技术的发展是重要关键。感光器件的发展CCD是1969年由美国的贝尔研究室所开发出来的。进入80年代,CCD影像传感器虽然有缺陷,由于不断的研究终于克服了困难,而于80年代后半期制造出高分辨率且高品质的CCD。
到了90年代制造出百万像素之高分辨率CCD,此时CCD的发展更是突飞猛进,算一算CCD发展至今也有二十多个年头了。进入90年代中期后,CCD技术得到了迅猛发展,同时,CCD的单位面积也越来越小。但为了在CCD面积减小的同时提高图像的成像质量,SONY与1989年开发出了SUPER HAD CCD,这种新的感光器件是在CCD面积减小的情况下,依靠CCD组件内部放大器的放大倍率提升成像质量。以后相继出现了NEW STRUCTURE CCD、EXVIEW HAD CCD、四色滤光技术(专为SONY F828所应用)。而富士数码相机则采用了超级CCD(Super CCD)、Super CCD SR。对于CMOS来说,具有便于大规模生产,且速度快、成本较低,将是数字相机关键器件的发展方向。
目前,在CANON等公司的不断努力下,新的CMOS器件不断推陈出新,高动态范围CMOS器件已经出现,这一技术消除了对快门、光圈、自动增益控制及伽玛校正的需要,使之接近了CCD的成像质量。
另外由于CMOS先天的可塑性,可以做出高像素的大型CMOS感光器而成本却不上升多少。相对于CCD的停滞不前相比CMOS作为新生事物而展示出了蓬勃的活力。作为数码相机的核心部件,CMOS感光器以已经有逐渐取代CCD感光器的趋势,并有希望在不久的将来成为主流的感光器。
影像感光器件因素对于数码相机来说,影像感光器件成像的因素主要有两个方面:一是感光器件的面积;二是感光器件的色彩深度。感光器件面积越大,成像较大,相同条件下,能记录更多的图像细节,各像素间的干扰也小,成像质量越好。但随着数码相机向时尚小巧化的方向发展,感光器件的面积也只能是越来越小。
除了面积之外,感光器件还有一个重要指标,就是色彩深度,也就是色彩位,就是用多少位的二进制数字来记录三种原色。非专业型数码相机的感光器件一般是24位的,高档点的采样时是30位,而记录时仍然是24位,专业型数码相机的成像器件至少是36位的,据说已经有了48位的CCD。
对于24位的器件而言,感光单元能记录的光亮度值最多有2^8=256级,每一种原色用一个8位的二进制数字来表示,最多能记录的色彩是256x256x256约16,77万种。对于36位的器件而言,感光单元能记录的光亮度值最多有2^12=4096级,每一种原色用一个12位的二进制数字来表示,最多能记录的色彩是4096x4096x4096约68.7亿种。举例来说,如果某一被摄体,最亮部位的亮度是最暗部位亮度的400倍,用使用24位感光器件的数码相机来拍摄的话,如果按低光部位曝光,则凡是亮度高于256备的部位,均曝光过度,层次损失,形成亮斑,如果按高光部位来曝光,则某一亮度以下的部位全部曝光不足,如果用使用了36位感光器件的专业数码相机,就不会有这样的问题。
1.6.9 闪光灯
闪光灯的英文学名为Flash Light。闪光灯也是加强曝光量的方式之一,尤其在昏暗的地方,打闪光灯有助于让景物更明亮。使用闪光灯也会出现弊端,例如在拍人物时,闪光灯的光线可能会在眼睛的瞳孔发生残留的现象,进而发生「红眼」的情形,因此许多相机商都将”消除红眼”这项功能加入设计,在闪光灯开启前先打出微弱光让瞳孔适应,然后再执行真正的闪光,避免红眼发生。中低档数码相机一般都具备三种闪光灯模式,即自动闪光、消除红眼与关闭闪光灯。再高级一点的产品还提供“强制闪光”,甚至“慢速闪光”功能。
1.6.10 变焦
变焦分两种,一种是数字变焦;一种是光学变焦。作用与手机上,多数都采用数码变焦。
1.6.11 数字变焦
数字变焦也称为数码变焦,英文名称为Digital Zoom,数码变焦是通过数码相机内的处理器,把图片内的每个象素面积增大,从而达到放大目的。这种手法如同用图像处理软件把图片的面积改大,不过程序在数码相机内进行,把原来CCD影像感应器上的一部份像素使用”插值”处理手段做放大,将CCD影像感应器上的像素用插值算法将画面放大到整个画面。
与光学变焦不同,数码变焦是在感光器件垂直方向向上的变化,而给人以变焦效果的。在感光器件上的面积越小,那么视觉上就会让用户只看见景物的局部。但是由于焦距没有变化,所以,图像质量是相对于正常情况下较差。通过数码变焦,拍摄的景物放大了,但它的清晰度会有一定程度的下降,所以数码变焦并没有太大的实际意义。不过索尼独创 “智能数码变焦”,据说该先进技术,可以使图像在数码变焦之后仍然保持一定的清晰度。
1.6.12 光学变焦
光学变焦英文名称为Optical Zoom,数码相机依靠光学镜头结构来实现变焦。数码相机的光学变焦方式与传统35mm相机差不多,就是通过镜片移动来放大与缩小需要拍摄的景物,光学变焦倍数越大,能拍摄的景物就越远。光学变焦是通过镜头、物体和焦点三方的位置发生变化而产生的。当成像面在水平方向运动的时候,如下图,视觉和焦距就会发生变化,更远的景物变得更清晰,让人感觉像物体递进的感觉。
显而易见,要改变视角必然有两种办法,一种是改变镜头的焦距。用摄影的话来说,这就是光学变焦。通过改变变焦镜头中的各镜片的相对位置来改变镜头的焦距。另一种就是改变成像面的大小,即成像面的对角线长短在目前的数码摄影中,这就叫做数码变焦。
实际上数码变焦并没有改变镜头的焦距,只是通过改变成像面对角线的角度来改变视角,从而产生了“相当于”镜头焦距变化的效果。如今的数码相机的光学变焦倍数大多在2倍-5倍之间,即可把10米以外的物体拉近至5-3米近;也有一些数码相机拥有10倍的光学变焦效果。
家用摄录机的光学变焦倍数在10倍~22倍,能比较清楚的拍到70米外的东西。使用增倍镜能够增大摄录机的光学变焦倍数。如果光学变焦倍数不够,我们可以在镜头前加一增倍镜,其计算方法是这样的,一个2倍的增距镜,套在一个原来有4倍光学变焦的数码相机上,那么这台数码相机的光学变焦倍数由原来的1倍、2倍、3倍、4倍变为2倍、4倍、6倍和8倍,即以增距镜的倍数和光学变焦倍数相乘所得。
1.6.13 连拍
连拍功能英文学名为continuous shooting,是通过节约数据传输时间来捕捉摄影时机。连拍模式通过将数据装入数码相机内部的高速存储器(高速缓存),而不是向存储卡传输数据,可以在短时间内连续拍摄多张照片。由于数码相机拍摄要经过光电转换,a/d转换及媒体记录等过程,其中无论转换还是记录都需要花费时间,特别是记录花费时间较多。
因此,所有数码相机的连拍速度都不很快。连拍一般以帧为计算单位,好像电影胶卷一样,每一帧代表一个画面,每秒能捕捉的帧数越多,连拍功能越快。
目前,数码相机中最快的连拍速度为7帧/秒,而且连拍3秒钟后必须再过几秒才能继续拍摄。当然,连拍速度对于摄影记者和体育摄影受好者是必须注意的指标,而普通摄影场合可以不必考虑。
一般情况下,连拍捕捉的照片,分辨率和质量都会有所减少。有些数码相机在连拍功能上可以选择,拍摄分辨率较小的照片,连拍速度可以加快,反之,分辨率 大的照片的连拍速度会相对减缓。通过连续快拍模式,只须轻按按钮,即可连续拍摄,将连续动作生动地记录下来。
1.6.14 自动白平衡
白平衡英文名称为White Balance。物体颜色会因投射光线颜色产生改变,在不同光线的场合下拍摄出的照片会有不同的色温。例如以钨丝灯(电灯泡)照明的环境拍出的照片可能偏黄,一般来说,CCD没有办法像人眼一样会自动修正光线的改变。白平衡就是无论环境光线如何,让数码相机默认“白色”,就是让他能认出白色,而平衡其他颜色在有色光线下的色调。
颜色实质上就是对光线的解释,在正常光线下看起来是白颜色的东西在较暗的光线下看起来可能就不是白色,还有荧光灯下的”白”也是”非白”。对于这一切如果能调整白平衡,则在所得到的照片中就能正确地以”白”为基色来还原其他颜色。现在大多数的商用级数码相机均提供白平衡调节功能。正如前面提到的白平衡与周围光线密切相关,因而,启动白平衡功能时闪光灯的使用就要受到限制,否则环境光的变化会使得白平衡失效或干扰正常的白平衡。
1.6.15 视频拍摄
短片拍摄功能即数码相机具备拍摄视频文件的功能。有别于DV(数码摄像机),数码相机只可以把视频文件存放在记忆卡里面,由于记忆体的空间有限,所以视频文件的质量跟大小都比较差。使用移动电话所拍摄的视频,一般是采用128×96与176×144大小两种分辨率,根据手机内存而定,相对来说支持扩展存储的手机拍摄视频时间也长。
2手机摄像头分析
2.1摄像头原理简析
OmniVision 技术有限公司是世界上为大批量影像市场提供单芯片摄像机解决方案的主要供应商。其独有的 CameraChips TM 技术,OmniVision集成影像采集和处理功能于单一芯片中,只需一个镜头即可提供一个完整的影像解决方案。不同于其它多芯片影像传感器解决方案,OmniVision 的 CameraChips TM 不需要外接处理器即可以输出高质量的静态图片和视频图像。从而得到功耗更低、体积更小、外围功能更强、比竞争对手价格更低的解决方案。我们的知识产权包括提高灵敏度、扩展动态范围、提高影像分辨率、显著减少噪声的独有技术。减少噪声进一步提高了灵敏度,又扩展了OmniVision CameraChips TM 可以应用的场合。
SCCB是OmnVision公司开发的一种双向三线的同步串行总线,引线接口有使能线SCCB_E,是串行时钟信号总线SIO_C,串行数据信号总线SIO_D。SCCB控制总线功能的实现完全是依靠SCCE、SIO_C、SIO_D三条总线上电平的状态以及三者之间的相互配合实现的。
控制总线规定的条件如下:当SCCE有高电平变到低电平时,数据传输开始。当SCCE有低电平转化为高电平时,数据传输结束。为了避免传送无用的信息位,分别在传输开始之前、传输结束之后将SIO_D设置为高电平。在数据传输期间,SCCE始终保持低电平,SIO_D上数据的传输受SIO_C的控制。当SIO_C为低电平时,SIO_D上数据有效,SIO_D为稳定数据状态,SIO_C每出现一正脉冲,将传送一位数据。
SCCB_E低电平有效,如果将其接地,那么SIO_C,SIO_D的工作方式十分类似于I2C总线。与I2C总线一样,在SCCB总线中主设备发送一个字节后,从设备需要将数据线SIO_D拉低作为应答信号(ACK)返回给主设备,才能表示发送成功。值得注意的是由于CMOS器件所能承受的灌电流很低,所以接至时钟线SIO_C、数据线SIO_D的上拉电阻阻值应在3~5 kΩ之间,并且对于主设备发送参数完毕后,需立即释放数据线SIO_D以保证其处于悬空状态,即主设备在送完一个字节后立即执行一条指令,使数据线SIO_D发出读取信号的操作。