# -*- coding: utf-8 -*-
"""
Spyder Editor
This is a temporary script file.
"""
import numpy as np
def sigmoid(x,deriv = False):#前向传播
if (deriv == True):
return x*(1-x)
return 1/(1+np.exp(-x))#反向传播
x = np.array([[0,0,1],
[0,1,1],
[1,0,1],
[1,1,1],
[0,0,1]]
)
y = np.array([[0],
[1],
[1],
[0],
[0]]
)
np.random.seed(1)
w0 = 2*np.random.random((3,4)) -1
w1 = 2*np.random.random((4,1)) -1
for j in range(60000):
l0 =x
l1 =sigmoid(np.dot(l0,w0))
l2 =sigmoid(np.dot(l1,w1))
l2_error = y-l2#错误求导1/2(y-y‘)**2
if(j%10000) == 0:
print('Error'+str(np.mean(np.abs(l2_error))))
l2_delta = l2_error * sigmoid(l2,deriv=True)#w1对错误做多大贡献(逐个样本相乘
l1_error = l2_delta.dot(w1.T)
l1_delta = l1_error * sigmoid(l1,deriv=True)
w1 += l1.T.dot(l2_delta)#自身梯度×上面传下来的
w0 += l0.T.dot(l1_delta)