手写神经网络Python

# -*- coding: utf-8 -*-
"""
Spyder Editor

This is a temporary script file.
"""

import numpy as np
def sigmoid(x,deriv = False):#前向传播
    if (deriv == True):
        return x*(1-x)
    return 1/(1+np.exp(-x))#反向传播
x = np.array([[0,0,1],
             [0,1,1],
             [1,0,1],
             [1,1,1],
             [0,0,1]]
)
y = np.array([[0],
              [1],
              [1],
              [0],
              [0]]
)
np.random.seed(1)
w0 = 2*np.random.random((3,4)) -1
w1 = 2*np.random.random((4,1)) -1
for j in range(60000):
    l0 =x
    l1 =sigmoid(np.dot(l0,w0))
    l2 =sigmoid(np.dot(l1,w1))
    l2_error = y-l2#错误求导1/2(y-y‘)**2
    if(j%10000) == 0:
        print('Error'+str(np.mean(np.abs(l2_error))))
    l2_delta = l2_error * sigmoid(l2,deriv=True)#w1对错误做多大贡献(逐个样本相乘
    l1_error = l2_delta.dot(w1.T)
    l1_delta = l1_error * sigmoid(l1,deriv=True)
    w1 += l1.T.dot(l2_delta)#自身梯度×上面传下来的
    w0 += l0.T.dot(l1_delta)

你可能感兴趣的:(神经网络,Python,神经网络)