机器学习之非线性回归SVR

  • 机器学习之非线性回归SVR
# -*- coding: utf-8 -*-
"""
Created on Fri Nov 30 20:56:54 2018

@author: muli
"""

import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets,cross_validation,svm


def load_data_regression():
    '''
    加载用于回归问题的数据集

    :return: 一个元组,用于回归问题。
    元组元素依次为:训练样本集、测试样本集、训练样本集对应的值、测试样本集对应的值
    '''
    diabetes = datasets.load_diabetes() #使用 scikit-learn 自带的一个糖尿病病人的数据集
    return cross_validation.train_test_split(diabetes.data,diabetes.target,
		test_size=0.25,random_state=0)# 拆分成训练集和测试集,测试集大小为原始数据集大小的 1/4

def test_SVR_linear(*data):
    '''
    测试 SVR 的用法。这里使用最简单的线性核

    :param data: 可变参数。
    它是一个元组,这里要求其元素依次为:训练样本集、测试样本集、训练样本的值、测试样本的值
    :return: None
    '''
    X_train,X_test,y_train,y_test=data
    regr=svm.SVR(kernel='linear')
    regr.fit(X_train,y_train)
    print('Coefficients:%s, intercept %s'%(regr.coef_,regr.intercept_))
    print('Score: %.2f' % regr.score(X_test, y_test))


def test_SVR_poly(*data):
    '''
    测试 多项式核的 SVR 的预测性能随  degree、gamma、coef0 的影响.

    :param data: 可变参数。
    它是一个元组,这里要求其元素依次为:训练样本集、测试样本集、训练样本的值、测试样本的值
    :return: None
    '''
    X_train,X_test,y_train,y_test=data
    fig=plt.figure()
    ### 测试 degree ####
    degrees=range(1,20)
    train_scores=[]
    test_scores=[]
    for degree in degrees:
        regr=svm.SVR(kernel='poly',degree=degree,coef0=1)
        regr.fit(X_train,y_train)
        train_scores.append(regr.score(X_train,y_train))
        test_scores.append(regr.score(X_test, y_test))
    ax=fig.add_subplot(1,3,1)
    ax.plot(degrees,train_scores,label="Training score ",marker='+' )
    ax.plot(degrees,test_scores,label= " Testing  score ",marker='o' )
    ax.set_title( "SVR_poly_degree r=1")
    ax.set_xlabel("p")
    ax.set_ylabel("score")
    ax.set_ylim(-1,1.)
    ax.legend(loc="best",framealpha=0.5)
    # 设置 X 轴的网格线,风格为 点画线
    plt.grid(axis='x',linestyle='-.')

    ### 测试 gamma,固定 degree为3, coef0 为 1 ####
    gammas=range(1,40)
    train_scores=[]
    test_scores=[]
    for gamma in gammas:
        regr=svm.SVR(kernel='poly',gamma=gamma,degree=3,coef0=1)
        regr.fit(X_train,y_train)
        train_scores.append(regr.score(X_train,y_train))
        test_scores.append(regr.score(X_test, y_test))
    ax=fig.add_subplot(1,3,2)
    ax.plot(gammas,train_scores,label="Training score ",marker='+' )
    ax.plot(gammas,test_scores,label= " Testing  score ",marker='o' )
    ax.set_title( "SVR_poly_gamma  r=1")
    ax.set_xlabel(r"$\gamma$")
    ax.set_ylabel("score")
    ax.set_ylim(-1,1)
    ax.legend(loc="best",framealpha=0.5)
    # 设置 X 轴的网格线,风格为 点画线
    plt.grid(axis='x',linestyle='-.')
    
    ### 测试 r,固定 gamma 为 20,degree为 3 ######
    rs=range(-4,20)
    train_scores=[]
    test_scores=[]
    for r in rs:
        regr=svm.SVR(kernel='poly',gamma=20,degree=3,coef0=r)
        regr.fit(X_train,y_train)
        train_scores.append(regr.score(X_train,y_train))
        test_scores.append(regr.score(X_test, y_test))
    ax=fig.add_subplot(1,3,3)
    ax.plot(rs,train_scores,label="Training score ",marker='+' )
    ax.plot(rs,test_scores,label= " Testing  score ",marker='o' )
    ax.set_title( "SVR_poly_r gamma=20 degree=3")
    ax.set_xlabel(r"r")
    ax.set_ylabel("score")
    ax.set_ylim(-1,1.)
    ax.legend(loc="best",framealpha=0.5)
    # 设置 X 轴的网格线,风格为 点画线
    plt.grid(axis='x',linestyle='-.')
    plt.show()


def test_SVR_rbf(*data):
    '''
    测试 高斯核的 SVR 的预测性能随 gamma 参数的影响

    :param data: 可变参数。
    它是一个元组,这里要求其元素依次为:训练样本集、测试样本集、训练样本的值、测试样本的值
    :return: None
    '''
    X_train,X_test,y_train,y_test=data
    gammas=range(1,20)
    train_scores=[]
    test_scores=[]
    for gamma in gammas:
        regr=svm.SVR(kernel='rbf',gamma=gamma)
        regr.fit(X_train,y_train)
        train_scores.append(regr.score(X_train,y_train))
        test_scores.append(regr.score(X_test, y_test))
    fig=plt.figure()
    ax=fig.add_subplot(1,1,1)
    ax.plot(gammas,train_scores,label="Training score ",marker='+' )
    ax.plot(gammas,test_scores,label= " Testing  score ",marker='o' )
    ax.set_title( "SVR_rbf")
    ax.set_xlabel(r"$\gamma$")
    ax.set_ylabel("score")
    ax.set_ylim(-1,1)
    ax.legend(loc="best",framealpha=0.5)
    # 设置 X 轴的网格线,风格为 点画线
    plt.grid(axis='x',linestyle='-.')
    plt.show()


def test_SVR_sigmoid(*data):
    '''
    测试 sigmoid 核的 SVR 的预测性能随 gamma、coef0 的影响.

    :param data: 可变参数。它是一个元组,这里要求其元素依次为:训练样本集、测试样本集、训练样本的值、测试样本的值
    :return: None
    '''
    X_train,X_test,y_train,y_test=data
    fig=plt.figure()

    ### 测试 gammam,固定 coef0 为 0.01 ####
    gammas=np.logspace(-1,3)
    train_scores=[]
    test_scores=[]

    for gamma in gammas:
        regr=svm.SVR(kernel='sigmoid',gamma=gamma,coef0=0.01)
        regr.fit(X_train,y_train)
        train_scores.append(regr.score(X_train,y_train))
        test_scores.append(regr.score(X_test, y_test))
    ax=fig.add_subplot(1,2,1)
    ax.plot(gammas,train_scores,label="Training score ",marker='+' )
    ax.plot(gammas,test_scores,label= " Testing  score ",marker='o' )
    ax.set_title( "SVR_sigmoid_gamma r=0.01")
    ax.set_xscale("log")
    ax.set_xlabel(r"$\gamma$")
    ax.set_ylabel("score")
    ax.set_ylim(-1,1)
    ax.legend(loc="best",framealpha=0.5)
    ### 测试 r ,固定 gamma 为 10 ######
    rs=np.linspace(0,5)
    train_scores=[]
    test_scores=[]

    for r in rs:
        regr=svm.SVR(kernel='sigmoid',coef0=r,gamma=10)
        regr.fit(X_train,y_train)
        train_scores.append(regr.score(X_train,y_train))
        test_scores.append(regr.score(X_test, y_test))
    ax=fig.add_subplot(1,2,2)
    ax.plot(rs,train_scores,label="Training score ",marker='+' )
    ax.plot(rs,test_scores,label= " Testing  score ",marker='o' )
    ax.set_title( "SVR_sigmoid_r gamma=10")
    ax.set_xlabel(r"r")
    ax.set_ylabel("score")
    ax.set_ylim(-1,1)
    ax.legend(loc="best",framealpha=0.5)
    plt.show()

 
if __name__=="__main__":
    X_train,X_test,y_train,y_test=load_data_regression() # 生成用于回归问题的数据集
#    test_SVR_linear(X_train,X_test,y_train,y_test) # 调用 test_SVR_linear
#    test_SVR_poly(X_train,X_test,y_train,y_test) # 调用 test_SVR_poly
#    test_SVR_rbf(X_train,X_test,y_train,y_test) # 调用 test_SVR_rbf
    test_SVR_sigmoid(X_train,X_test,y_train,y_test) # 调用 test_SVR_sigmod

  • 如图:

机器学习之非线性回归SVR_第1张图片

你可能感兴趣的:(机器学习)