ThreadLocal原理理解与源码分析

  java中的ThreadLocal相信很多人都有使用过,但很多人仅知道它的用法和作用(本地变量副本,用于管理数据库连接,Session等),但对它的原理可能还没有太多认识. 最近自己翻了下它的源码,把自己的理解和想法写下来与大家分享.
  ps:本文参考的源码版本为JDK1.8

1. 什么是ThreadLocal

ThreadLocal,很多地方叫做线程本地变量,也有些地方叫做线程本地存储,其实意思差不多。ThreadLocal为变量在每个线程中都创建了一个副本,那么每个线程可以访问自己内部的副本变量。

从名字上可以看出,它是和线程有关的.那么它和线程的关系是怎么样,如何发挥作用的呢? 我们可以看看Thread类相关的源码

    /* ThreadLocal values pertaining to this thread. This map is maintained
     * by the ThreadLocal class. */
    ThreadLocal.ThreadLocalMap threadLocals = null;

    /*
     * InheritableThreadLocal values pertaining to this thread. This map is
     * maintained by the InheritableThreadLocal class.
     */
    ThreadLocal.ThreadLocalMap inheritableThreadLocals = null;

从上面可以看出,ThreadLocal在线程类中主要是通过其内部类ThreadLocalMap作为threadLocals和inheritableThreadLocals变量. 其中threadLocals存放当前线程相关的本地变量副本,而inheritableThreadLocals则是存放从父线程继承而来的本地变量副本,它的元素对应的实际类型是InheritableThreadLocal,这是ThreadLocal的一个子类,实现了特定的childValue方法.

2. ThreadLocal源码分析

此处尝试对整个ThreadLocal的主要源码进行基本的分析.源码里会包含一些长注释,对于关键的注释,这里会保留,并加上自己的分析

另外,ThreadLocal的关键方法为get(),set(),remove()和initialValue(),大家可以重点关注源码里这几个方法的实现

2.1 基本属性

public class ThreadLocal<T> {

    //ThreadLocal对象是作为ThreadLocalMap的一个key,所以此处通过nextHashCode方法获取自己的唯一标记,用于后面计算位置
    private final int threadLocalHashCode = nextHashCode();      

    //原子类保证线程安全,保证每个对象的hashcode唯一,并且是静态的,用于nextHashCode方法生成threadLocalHashCode
    private static AtomicInteger nextHashCode =
        new AtomicInteger();  


    //生成threadLocalHashCode的增量基数,但为什么是这个数,暂没细究
    private static final int HASH_INCREMENT = 0x61c88647;  


    //返回threadLocalHashCode的计算值
    private static int nextHashCode() {
        return nextHashCode.getAndAdd(HASH_INCREMENT);  
    }


    /**
     * Creates a thread local variable.
     * @see #withInitial(java.util.function.Supplier)
     */
    public ThreadLocal() {
    }

    /**
     * ThreadLocalMap is a customized hash map suitable only for
     * maintaining thread local values. No operations are exported
     * outside of the ThreadLocal class. The class is package private to
     * allow declaration of fields in class Thread.  To help deal with
     * very large and long-lived usages, the hash table entries use
     * WeakReferences for keys. However, since reference queues are not
     * used, stale entries are guaranteed to be removed only when
     * the table starts running out of space.
     */

    //定义了一个类似于HashMap这样的内部类,里面的Entry使用ThreadLocal对象作为key,并用弱引用的方式指向它
    static class ThreadLocalMap {

        /**
         * The entries in this hash map extend WeakReference, using
         * its main ref field as the key (which is always a
         * ThreadLocal object).  Note that null keys (i.e. entry.get()
         * == null) mean that the key is no longer referenced, so the
         * entry can be expunged from table.  Such entries are referred to
         * as "stale entries" in the code that follows.
         */

        //Entry继承的WeakReference用于ThreadLocal(看 super(k);), 所以当外部的ThreadLocal对象指针一旦置为null,该对象就会在下一次gc中回收掉
        static class Entry extends WeakReference> {
            /** The value associated with this ThreadLocal. */
            Object value;

            Entry(ThreadLocal k, Object v) {
                super(k);
                value = v;
            }
        }

        /**
         * The initial capacity -- MUST be a power of two.
         */
        private static final int INITIAL_CAPACITY = 16; // 下面Entry[] table的初始大小,必须为2的幂数

        /**
         * The table, resized as necessary.
         * table.length MUST always be a power of two.
         */

        private Entry[] table; //利用Entry[]模拟Map的实现

        /**
         * The number of entries in the table.
         */
        private int size = 0;  // table中的元素个数

        /**
         * The next size value at which to resize.
         */
        private int threshold; // table下一次要扩容时的阈值

        /**
         * Set the resize threshold to maintain at worst a 2/3 load factor.
         */
        private void setThreshold(int len) {
            threshold = len * 2 / 3;
        }

        /**
         * Increment i modulo len.
         */
        private static int nextIndex(int i, int len) {    //返回下一个索引值
            return ((i + 1 < len) ? i + 1 : 0);
        }

        /**
         * Decrement i modulo len.
         */
        private static int prevIndex(int i, int len) {  //返回上一个索引值
            return ((i - 1 >= 0) ? i - 1 : len - 1);
        }

        /**
         * Construct a new map initially containing (firstKey, firstValue).
         * ThreadLocalMaps are constructed lazily, so we only create
         * one when we have at least one entry to put in it.
         */

        //使用懒加载的方式,最少有一个entry才会创建ThreadLocalMap
        ThreadLocalMap(ThreadLocal firstKey, Object firstValue) {  
            table = new Entry[INITIAL_CAPACITY];
            int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);   //通过上面定义threadLocalHashCode计算table位置,可以理解为一个hash的过程
            table[i] = new Entry(firstKey, firstValue);
            size = 1;
            setThreshold(INITIAL_CAPACITY);
        }
    }
}

  关于这个ThreadLocalMap的INITIAL_CAPACITY为什么是2的N次方,这在HashMap里面也是有体现的,这里INITIAL_CAPACITY为16那么16-1=15在二进制中就是1111.当他和TheadLocal的INITIAL_CAPACITY相与(&)的时候,得到的数绝对是<=INITIAL_CAPACITY.这和threadLocalHashCode%INITIAL_CAPACITY的效果是一样的,但是效率比前者好处很多倍, 那么此时我们已经得到一个下标位置,我们直接new了一个Entry(ThreadLocal,Object),放入该table数组当中,这个时候把table的size置为1,阈值设为INITIAL_CAPACITY的2/3(达到最大长度的2/3的时候会扩容).

   现在通过代码已经渐渐的明白了ThreadLocal的本质,就是内部用一个以ThreadLocal为Key的ThreadLocalMap为不同的线程存储变量副本,这个map的基本元素为继承了弱引用的Entry.

   关于Entry,这里说一下,当外部的ThreadLocal指针置为null后,整个程序就只有Entry的某个key值指向它,而它是弱引用的,这代表他将会被下一次的GC回收掉. 这中间的关系可以用以下这张图(摘自网络)来描述:
ThreadLocal原理理解与源码分析_第1张图片

  但是这中间还有个问题,由于位置下标是采用类似hash的方法计算出来,那么两个不同ThreadLocal有可能计算出相同的下标,这就造成了hash冲突,在ThreadLocal里面用的解决Hash冲突是用的线性探查法(Linear Probing)来解决的,当i下标有值的时候则找到i+1处,然后依次往下推.

2.2 initialValue方法

    /**
     * Returns the current thread's "initial value" for this
     * thread-local variable.  This method will be invoked the first
     * time a thread accesses the variable with the {@link #get}
     * method, unless the thread previously invoked the {@link #set}
     * method, in which case the {@code initialValue} method will not
     * be invoked for the thread.  Normally, this method is invoked at
     * most once per thread, but it may be invoked again in case of
     * subsequent invocations of {@link #remove} followed by {@link #get}.
     *
     * 

This implementation simply returns {@code null}; if the * programmer desires thread-local variables to have an initial * value other than {@code null}, {@code ThreadLocal} must be * subclassed, and this method overridden. Typically, an * anonymous inner class will be used. * * @return the initial value for this thread-local */ //返回以这个ThreadLocal为key的value对象的初始值,此处默认为null,用户在刚创建ThreadLocal时,也可用子类的方式重写此方法返回自定义的初始值. 一般此方法会在get方法找不到值时被第一次调用,若在调用remove方法后又调用了get方法,那么此方法也会被再次调用 protected T initialValue() { return null; } /** * Creates a thread local variable. The initial value of the variable is * determined by invoking the {@code get} method on the {@code Supplier}. * * @param the type of the thread local's value * @param supplier the supplier to be used to determine the initial value * @return a new thread local variable * @throws NullPointerException if the specified supplier is null * @since 1.8 */ //1.8版本后,提供通过Supplier设置initValue的接口,方法返回的SuppliedThreadLocal是ThreadLocal的子类 public static ThreadLocal withInitial(Supplier supplier) { return new SuppliedThreadLocal<>(supplier); } /** * An extension of ThreadLocal that obtains its initial value from * the specified {@code Supplier}. */ //重写了initialValue方法的子类 static final class SuppliedThreadLocal extends ThreadLocal { private final Supplier supplier; SuppliedThreadLocal(Supplier supplier) { this.supplier = Objects.requireNonNull(supplier); } @Override protected T initialValue() { return supplier.get(); } }

   initialValue主要是给提供我们自定义初始值的接口

2.3 get方法

    /**
     * Returns the value in the current thread's copy of this
     * thread-local variable.  If the variable has no value for the
     * current thread, it is first initialized to the value returned
     * by an invocation of the {@link #initialValue} method.
     *
     * @return the current thread's value of this thread-local
     */
     //获取ThreadLocal在当前线程存放的值
    public T get() { 
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);  //返回第一节所说的threadLocals属性值
        if (map != null) {
            ThreadLocalMap.Entry e = map.getEntry(this);  //将自身对象作为key,在Map中查找对应的Entry,具体的查找逻辑参考下一节
            if (e != null) {
                @SuppressWarnings("unchecked")
                T result = (T)e.value;
                return result;
            }
        }
        //map为null,需要从初始化的地方取值,该方法分析详见下面部分
        return setInitialValue();
    }

    ThreadLocalMap getMap(Thread t) {
        return t.threadLocals;
    }   

    static class ThreadLocalMap {
        /**
        *篇幅问题,省略部分上面已出现的属性
        */

        private Entry getEntry(ThreadLocal key) {
            int i = key.threadLocalHashCode & (table.length - 1);
            Entry e = table[i];    //从计算出的下标尝试一次取得对应的value
            if (e != null && e.get() == key)
                return e;
            else
                return getEntryAfterMiss(key, i, e);   //第一次尝试没拿到,通过这个方法继续尝试
        }   

       private Entry getEntryAfterMiss(ThreadLocal key, int i, Entry e) {
            Entry[] tab = table;
            int len = tab.length;

            while (e != null) {
                ThreadLocal k = e.get();
                if (k == key)     //如果key相同,直接返回
                    return e;
                if (k == null)    //如果ThreadLocal变为null,说明已被GC,通过expungeStaleEntry处理这个无效的Entry,也叫脏Entry
                    expungeStaleEntry(i);
                else
                    i = nextIndex(i, len);
                e = tab[i];
            }
            return null;
        }

        /**
         * Expunge a stale entry by rehashing any possibly colliding entries
         * lying between staleSlot and the next null slot.  This also expunges
         * any other stale entries encountered before the trailing null.  See
         * Knuth, Section 6.4
         *
         * @param staleSlot index of slot known to have null key
         * @return the index of the next null slot after staleSlot
         * (all between staleSlot and this slot will have been checked
         * for expunging).
         */

        //清除staleSlot位置的无效Entry,并返回下一个Entry元素为null的下标
        private int expungeStaleEntry(int staleSlot) {
            Entry[] tab = table;
            int len = tab.length;

            //清除该位置的Entry数据
            tab[staleSlot].value = null;
            tab[staleSlot] = null;
            size--;

            // Rehash until we encounter null
            Entry e;
            int i;
            for (i = nextIndex(staleSlot, len);
                 (e = tab[i]) != null;
                 i = nextIndex(i, len)) {
                ThreadLocal k = e.get();
                if (k == null) {      //继续往后清除key为null的无效Entry
                    e.value = null;
                    tab[i] = null;
                    size--;
                } else {
                    int h = k.threadLocalHashCode & (len - 1);    //重新计算Entry下标,类似于重新hash
                    if (h != i) {
                        tab[i] = null;

                        // Unlike Knuth 6.4 Algorithm R, we must scan until
                        // null because multiple entries could have been stale.
                        while (tab[h] != null)       //对于下标出现变化的Entry,将其与下一个无效Entry的位置互换
                            h = nextIndex(h, len);
                        tab[h] = e;
                    }
                }
            }
            return i;
        }   
    }

   get方法会在找不到值时调用setInitialValue方法在table中设置初始值,并返回.

2.4 set和setInitialValue方法

set方法和setInitialValue方法的逻辑其实是比较类似的,只是后者调用了initialValue方法设置初始而已


    private T setInitialValue() {
        T value = initialValue();    //通过initialValue方法取得要设置的值
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);    
        if (map != null)
            map.set(this, value);     //若map不为空,通过ThreadLocalMap内部的set方法设值,否则通过下面的createMap创建一个
        else
            createMap(t, value);
        return value;
    }


    public void set(T value) {
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null)
            map.set(this, value);
        else
            createMap(t, value);
    }

    /**
     * Create the map associated with a ThreadLocal. Overridden in
     * InheritableThreadLocal.
     *
     * @param t the current thread
     * @param firstValue value for the initial entry of the map
     */
    void createMap(Thread t, T firstValue) {
        t.threadLocals = new ThreadLocalMap(this, firstValue);    //通过上面2.1节里的ThreadLocalMap构造方法创建该线程的threadLocals
    }   


    static class ThreadLocalMap {
        /**
        *篇幅问题,省略部分上面已出现的属性
        */



        private void set(ThreadLocal key, Object value) {

            Entry[] tab = table;
            int len = tab.length;
            int i = key.threadLocalHashCode & (len-1);   //计算下标位置

            for (Entry e = tab[i];
                 e != null;
                 e = tab[i = nextIndex(i, len)]) {
                ThreadLocal k = e.get();

                if (k == key) {         //如果key已存在,则直接替换它value
                    e.value = value;     
                    return;
                }

                if (k == null) {      //如果在遍历过程中,遇到了无效Entry,则在该位置更新Entry的key-value
                    replaceStaleEntry(key, value, i);
                    return;
                }
            }

            //若前面遍历不成功,新建一个Entry,并检查threshold是否要扩容
            tab[i] = new Entry(key, value);
            int sz = ++size;
            if (!cleanSomeSlots(i, sz) && sz >= threshold)     // 若cleanSomeSlots没有清除任何无效Entry,则要检查threshold确定是否调用rehash方法扩容及重新hash   
                rehash();
        }


        private void replaceStaleEntry(ThreadLocal key, Object value,
                                       int staleSlot) {
            Entry[] tab = table;
            int len = tab.length;
            Entry e;


            int slotToExpunge = staleSlot;
            for (int i = prevIndex(staleSlot, len);      //找到在前面的第一个无效Entry的位置
                 (e = tab[i]) != null;
                 i = prevIndex(i, len))
                if (e.get() == null)
                    slotToExpunge = i;


            for (int i = nextIndex(staleSlot, len);
                 (e = tab[i]) != null;
                 i = nextIndex(i, len)) {   //尝试遍历后面的Entry,再次检查是否key已存在
                ThreadLocal k = e.get();

                if (k == key) {    //如果找到该key,重新设置value,并与staleSlot位置的无效Entry进行互换,以保证hash计算下标时的顺序 
                    e.value = value;

                    tab[i] = tab[staleSlot];
                    tab[staleSlot] = e;

                    if (slotToExpunge == staleSlot)     //确保接下来expungeStaleEntry要清除的Entry位置不是刚互换后的位置
                        slotToExpunge = i;
                    cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);    //expungeStaleEntry方法清除指定位置上的一个无效Entry,cleanSomeSlots方法则批量清除无效Entry,详见下面的分析
                    return;
                }


                if (k == null && slotToExpunge == staleSlot)   //若我们前面得到的slotToExpunge与staleSlot相同,则更新slotToExpunge的值
                    slotToExpunge = i;
            }

            //如果确实找不到key对应的Entry,则直接替换无效的Entry
            tab[staleSlot].value = null;
            tab[staleSlot] = new Entry(key, value);


            if (slotToExpunge != staleSlot)  //清除无效Entry
                cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
        }


        private boolean cleanSomeSlots(int i, int n) {   
            boolean removed = false;
            Entry[] tab = table;
            int len = tab.length;
            do {
                i = nextIndex(i, len);     //从参数i位置后面开始检查Entry
                Entry e = tab[i];
                if (e != null && e.get() == null) {
                    n = len;
                    removed = true;
                    i = expungeStaleEntry(i);    //清除特定位置下的无效Entry
                }
            } while ( (n >>>= 1) != 0);      //控制清除过程的遍历次数为{ log2(n) }
            return removed;
        }


        private void rehash() {    //此方法对table进行扩容及重新hash
            expungeStaleEntries();   //先清除table内所有的无效Entry


            if (size >= threshold - threshold / 4)  //用更严格的标准(threshold - threshold / 4)判断是否扩容.之所以要更严格是为了避免数据滞后
                resize();
        }

        private void resize() {   
            Entry[] oldTab = table;
            int oldLen = oldTab.length;
            int newLen = oldLen * 2;     //对table进行双倍扩容
            Entry[] newTab = new Entry[newLen];
            int count = 0;

            for (int j = 0; j < oldLen; ++j) {
                Entry e = oldTab[j];
                if (e != null) {
                    ThreadLocal k = e.get();
                    if (k == null) {
                        e.value = null;    // 置空以便GC回收
                    } else {
                        int h = k.threadLocalHashCode & (newLen - 1);    //重新hash
                        while (newTab[h] != null)
                            h = nextIndex(h, newLen);
                        newTab[h] = e;
                        count++;
                    }
                }
            }

            setThreshold(newLen);
            size = count;
            table = newTab;
        }


        private void expungeStaleEntries() {   //清除table内所有的无效Entry,比较耗性能,所以只能扩容前进行
            Entry[] tab = table;
            int len = tab.length;
            for (int j = 0; j < len; j++) {
                Entry e = tab[j];
                if (e != null && e.get() == null)
                    expungeStaleEntry(j);
            }
        }

    }

2.5 remove方法

remove方法相对比较容易理解

     public void remove() {
         ThreadLocalMap m = getMap(Thread.currentThread());
         if (m != null)
             m.remove(this);
     }

    static class ThreadLocalMap {
        /**
        *篇幅问题,省略部分上面已出现的属性
        */

        private void remove(ThreadLocal key) {
            Entry[] tab = table;
            int len = tab.length;
            int i = key.threadLocalHashCode & (len-1);   //计算下标
            for (Entry e = tab[i];
                 e != null;
                 e = tab[i = nextIndex(i, len)]) {
                if (e.get() == key) {
                    e.clear();    //父类Reference的clear方法,把弱引用置空
                    expungeStaleEntry(i);    //清除该Entry
                    return;
                }
            }
        }
    }

3. 总结

从上面源码的分析可知,ThreadLocal的实现实质上是通过其内部的ThreadLocalMap类实现的,它的set(),get(),remove()方法都是调用ThreadLocalMap的相应方法. 而且真正存储时把被弱引用包装了的ThreadLocal对象作为key, 通过hash这个key寻找它在table的位置,并采用简单的线性探查法解决hash冲突

你可能感兴趣的:(Java)