pandas.DataFrame.duplicated

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.duplicated.html

pandas.DataFrame.duplicated

DataFrame.duplicated(subset=None, keep='first')[source]

Return boolean Series denoting duplicate rows, optionally only considering certain columns

Parameters:

subset : column label or sequence of labels, optional

Only consider certain columns for identifying duplicates, by default use all of the columns

keep : {‘first’, ‘last’, False}, default ‘first’

  • first : Mark duplicates as True except for the first occurrence.
  • last : Mark duplicates as True except for the last occurrence.
  • False : Mark all duplicates as True.
Returns:

duplicated : Series

pandas不需要插入数据库,看来用pandas处理pci混淆问题更快。

https://blog.csdn.net/hguo11/article/details/82556171

pandas

代码如下:

import pandas as pd
import numpy as np

salaries = pd.DataFrame({
    'name': ['BOSS', 'Lilei', 'Lilei', 'Han', 'BOSS', 'BOSS', 'Han', 'BOSS'],
    'Year': [2016, 2016, 2016, 2016, 2017, 2017, 2017, 2017],
    'Salary': [1, 2, 3, 4, 5, 6, 7, 8],
    'Bonus': [2, 2, 2, 2, 3, 4, 5, 6]
})
print(salaries)
print(salaries['Bonus'].duplicated(keep='first'))
print(salaries[salaries['Bonus'].duplicated(keep='first')].index)
print(salaries[salaries['Bonus'].duplicated(keep='first')])
print(salaries['Bonus'].duplicated(keep='last'))
print(salaries[salaries['Bonus'].duplicated(keep='last')].index)
print(salaries[salaries['Bonus'].duplicated(keep='last')])

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18

输出如下:

   Bonus  Salary  Year   name
0      2       1  2016   BOSS
1      2       2  2016  Lilei
2      2       3  2016  Lilei
3      2       4  2016    Han
4      3       5  2017   BOSS
5      4       6  2017   BOSS
6      5       7  2017    Han
7      6       8  2017   BOSS
0    False
1     True
2     True
3     True
4    False
5    False
6    False
7    False
Name: Bonus, dtype: bool
Int64Index([1, 2, 3], dtype='int64')
   Bonus  Salary  Year   name
1      2       2  2016  Lilei
2      2       3  2016  Lilei
3      2       4  2016    Han
0     True
1     True
2     True
3    False
4    False
5    False
6    False
7    False
Name: Bonus, dtype: bool
Int64Index([0, 1, 2], dtype='int64')
   Bonus  Salary  Year   name
0      2       1  2016   BOSS
1      2       2  2016  Lilei
2      2       3  2016  Lilei

---------------------
作者:耗子来啦
来源:CSDN
原文:https://blog.csdn.net/hguo11/article/details/82556171
版权声明:本文为博主原创文章,转载请附上博文链接!

你可能感兴趣的:(官方手册)