- 【DeepSeek】一文详解GRPO算法——为什么能减少大模型训练资源?
FF-Studio
DeepSeekR1算法
GRPO,一种新的强化学习方法,是DeepSeekR1使用到的训练方法。今天的这篇博客文章,笔者会从零开始,层层递进地为各位介绍一种在强化学习中极具实用价值的技术——GRPO(GroupRelativePolicyOptimization)。如果你是第一次听说这个概念,也不必慌张,笔者会带领你从最基础的强化学习背景知识讲起,一步步剖析其来龙去脉,然后再结合实例讲解GRPO在实际应用中的思路和操作示
- Python 循环神经网络(RNN)算法详解与应用案例
闲人编程
pythonpythonrnn算法循环神经网络深度学习文本生成
目录Python循环神经网络(RNN)算法详解与应用案例引言一、RNN的基本原理1.1RNN的结构1.2RNN的优势与挑战二、Python中RNN的面向对象实现2.1`RNNCell`类的实现2.2`RNNModel`类的实现2.3`Trainer`类的实现三、案例分析3.1序列预测3.1.1数据准备3.1.2模型训练3.1.3结果分析3.2文本生成3.2.1数据准备3.2.2模型训练3.2.3文
- 第TR5周:Transformer实战:文本分类
计算机真好丸
transformer分类深度学习
文章目录1.准备环境1.1环境安装1.2加载数据2.数据预处理2.1构建词典2.2生成数据批次和迭代器2.3构建数据集3.模型构建3.1定义位置编码函数3.2定义Transformer模型3.3初始化模型3.4定义训练函数3.5定义评估函数4.训练模型4.1模型训练5.总结:本文为365天深度学习训练营中的学习记录博客原作者:K同学啊1.准备环境1.1环境安装这是一个使用PyTorch通过Tran
- 使用Python实现深度学习模型:知识蒸馏与模型压缩
Echo_Wish
Python笔记从零开始学Python人工智能Python算法python深度学习开发语言
在深度学习领域,模型的大小和计算复杂度常常是一个挑战。知识蒸馏(KnowledgeDistillation)和模型压缩(ModelCompression)是两种有效的技术,可以在保持模型性能的同时减少模型的大小和计算需求。本文将详细介绍如何使用Python实现这两种技术。目录引言知识蒸馏概述模型压缩概述实现步骤数据准备教师模型训练学生模型训练(知识蒸馏)模型压缩代码实现结论1.引言在实际应用中,深
- 如何使用DeepSeek训练模型
LCG元
大模型人工智能
目录准备工作硬件要求软件环境数据收集与预处理数据收集数据预处理模型构建与训练模型构建模型训练模型评估与调优评估指标调优方法部署与应用部署方式应用集成✍️相关问答DeepSeek模型在医疗领域的具体应用案例有哪些?临床辅助诊疗:医患关系的连接桥梁:医疗科研的学术助手:医疗服务体系革新:医学影像诊断:药物研发:基层医疗能力提升:医疗机器人智能化:如何利用DeepSeek进行多模态数据分析?脑图使用De
- labelme转YOLOv8、YOLOv5 标签格式 标注数据
一颗小树x
YOLO目标检测实践应用labelmeYOLOv8YOLOv5标签格式标注数据
前言本文分析将labelme的标签,转为YOLOv8、YOLOv5的格式,实现模型训练。首先了解YOLOv8和YOLOv5标签格式,然后了解labelme标签格式,最近实现数据格式转换。1、YOLOv8和YOLOv5标签格式YOLOv8的标签格式与YOLOv5基本相同,使用一种简单的txt文本格式,来存储每个图像的标注数据。每个图像对应一个文本文件,这些文本文件与图像文件位于同一目录并且具有相同的
- GitHub 热点项目介绍
tomlone
技术热点人工智能
Oumi-端到端的基础模型平台项目简介Oumi是一个全开源平台,旨在解决大模型在各个阶段面临的复杂问题,提供构建先进端到端基础模型所需的一切,涵盖数据准备、训练、评估和部署等环节。项目链接GitHub-oumi-ai/oumi特点提供一致的API、生产级可靠性及研究所需的灵活性。已与13所研究型大学的学者建立合作。可通过pip安装并使用CRI命令进行模型训练、评估和推理。项目中还提供了详细的not
- 大模型参数高效微调(PEFT)技术解析及微调加速实践
AI产品经理
人工智能自然语言处理深度学习语言模型
2023年,大模型如雨后春笋般爆发,58同城TEG-AILab作为AI平台部门,紧跟大语言模型技术发展步伐,打造了大语言模型平台,支持大语言模型训练和推理部署,并基于大语言模型平台构建了58同城生活服务领域(房产、招聘、汽车、黄页)垂类大模型灵犀大语言模型(ChatLing),支撑了业务方大模型应用的探索落地。灵犀大语言模型在公开评测集和实际应用场景下,效果均优于开源通用大语言模型以及商用通用大语
- ML.NET库学习006:成人人口普查数据分析与分类预测
North_D
ML.NET库机器学习人工智能深度学习数据挖掘目标检测自然语言处理神经网络
文章目录ML.NET库学习006:成人人口普查数据分析与分类预测概述数据集数据字段解释为何数据准备很重要主要功能与模块数据准备机器学习工作流代码结构说明数据准备模块机器学习工作流数据加载与分割特征工程与模型训练模型评估与预测实现细节与注意事项数据准备模块机器学习工作流性能优化项目优势LightGBM分类器原理说明总结ML.NET库学习006:成人人口普查数据分析与分类预测概述本项目使用C#和ML.
- 基于YOLOv5深度学习的木材表面缺陷检测系统:UI界面 + YOLOv5 + 数据集详细教程
深度学习&目标检测实战项目
YOLO深度学习uiYOLOv5人工智能计算机视觉
随着工业自动化的发展,木材加工行业对产品质量的要求日益提高。木材表面缺陷的检测是确保产品质量的重要环节。传统的人工检测方式不仅费时费力,而且容易受到人为因素的影响。基于深度学习的目标检测技术,尤其是YOLOv5,凭借其优越的实时性和准确性,成为木材表面缺陷检测的有效工具。本博客将详细介绍如何构建一个基于YOLOv5的木材表面缺陷检测系统,包括数据集准备、模型训练、UI界面开发及完整代码实现。目录目
- 9、深度学习-自学之路-损失函数、梯度下降、学习率、权重更新的理解
小宇爱
深度学习-自学之路深度学习学习人工智能
由《8、深度学习-自学之路-损失函数和梯度下降程序展示》我们看到我们设计了一个程序,这个程序里面由学习率,有损失函数,有梯度下降,权重更新。一、我们先来讲一下损失函数,e_dn=(p_dn-ture)**2#损失值的计算p_dn:预测值ture:真实值e_dn:损失值我们在第7章说了,我们的预测值和真实值相差越小(也就是损失值越小),说明我们模型训练的越好。这个也是我们进行模型训练的原因。我们使用
- 华为 MindStudio 安装指南
丰年稻香
人工智能python人工智能
1.MindStudio介绍华为MindStudio是一款集成开发环境(IDE),用于AscendAI处理器的开发调试。它支持模型训练、推理、算子开发、性能优化等AI任务,并依赖CANN(ComputeArchitectureforNeuralNetworks)作为计算架构基础。本指南介绍如何在KunLunG2280服务器上安装MindStudio,包括环境准备、依赖安装、CANN安装及MindS
- DeepSeek使用手册,其中一份是清华大学出品
cpa007
云计算
自娶,。https://pan.quark.cn/s/d174471b17c0深入了解DeepSeek:从技术到应用一、DeepSeek是什么?DeepSeek(深度求索)是一款由杭州深度求索人工智能基础技术研究有限公司开发的人工智能平台,专注于提供高效易用的AI模型训练与推理能力。它既包含预训练大语言模型(如DeepSeek-R1系列),也提供配套工具链,助力开发者快速实现AI应用落地。二、De
- 如何避免交叉验证中的数据泄露?
奋进小青
人工智能深度学习机器学习
大家好,我是小青在机器学习中,交叉验证(Cross-Validation)是一种常用的模型评估技术,目的是通过将数据集分割为多个子集,反复训练和验证模型,以便更好地估计模型的性能。然而,在交叉验证过程中,数据泄露(DataLeakage)是一个非常严重的问题,它会导致模型的评估结果过于乐观,进而使得模型在实际应用中表现不佳。什么是数据泄露数据泄露是指在模型训练过程中,模型不恰当地接触到了与验证集或
- 基于深度学习的半导体检测与预测算法研究(二)
埃菲尔铁塔_CV算法
深度学习人工智能神经网络opencv计算机视觉python
摘要随着半导体行业的飞速发展,对生产过程中的检测和性能预测提出了更高要求。深度学习凭借其强大的数据处理和特征提取能力,在半导体领域展现出巨大的应用潜力。本文详细探讨了深度学习在半导体缺陷检测、工艺参数预测等方面的应用原理和方法,介绍了常见的深度学习模型如卷积神经网络(CNN)、循环神经网络(RNN)及其变体在半导体数据处理中的应用,分析了模型训练与优化的关键技术,并通过实际案例验证了深度学习算法在
- 基于深度学习的半导体算法原理及应用
埃菲尔铁塔_CV算法
算法机器学习人工智能计算机视觉深度学习python
摘要随着半导体产业的持续发展,深度学习技术在该领域的应用日益广泛且深入。本文全面阐述了基于深度学习的半导体算法原理,涵盖卷积神经网络(CNN)、循环神经网络(RNN)及其变体长短时记忆网络(LSTM)和门控循环单元(GRU)等在半导体制造过程监测、缺陷检测、性能预测等方面的应用。详细分析了这些算法处理半导体相关数据的机制,探讨了算法实现中的关键技术,如数据预处理、模型训练与优化等。通过实际案例展示
- 【python 机器学习】sklearn转换器与预估器
人才程序员
杂谈python机器学习sklearn人工智能目标检测深度学习神经网络
文章目录sklearn转换器与预估器1.什么是转换器(Transformer)?通俗介绍:学术解释:2.什么是预估器(Estimator)?通俗介绍:学术解释:3.转换器与预估器的共同点4.转换器与预估器的区别5.使用`sklearn`中的转换器与预估器5.1示例:数据标准化(转换器)5.2示例:模型训练与预测(预估器)6.使用`Pipeline`结合转换器与预估器7.总结sklearn转换器与预
- 100.16 AI量化面试题:监督学习技术在量化金融中的应用方案
AI量金术师
金融资产组合模型进化论人工智能学习金融python机器学习
目录0.承前1.解题思路1.1应用场景维度1.2技术实现维度1.3实践应用维度2.市场预测模型2.1趋势预测2.2模型训练与评估3.风险评估模型3.1信用风险评估4.投资组合优化4.1资产配置模型5.回答话术0.承前本文通过通俗易懂的方式介绍监督学习在量化金融中的应用,包括市场预测、风险评估、投资组合优化等方面。如果想更加全面清晰地了解金融资产组合模型进化论的体系架构,可参考:0.金融资产组合模型
- 深入解析ReLU激活函数的优缺点及其平衡策略
weixin_40941102
深度学习人工智能
ReLU(RectifiedLinearUnit)是一种常用的激活函数,广泛应用于深度神经网络中。它有其优缺点,在不同场景下需要权衡使用。以下是对ReLU优缺点的详细解析及其平衡方式的建议:优点减少负向因素的影响:解释:ReLU通过设置所有负值为0,只保留正值,这样可以减少负值对模型的影响。影响:这有助于模型更快地收敛,因为梯度不会因为负值而减小,从而避免负向因素对模型训练的不良影响。结论:这使得
- pytorch深度学习模型推理和部署、pytorch&ONNX&tensorRT模型转换以及python和C++版本部署
机械心
深度学习pythonpytorch
目录1.采用pytorch进行推理2.采用onnx进行推理2.1pytorch转换为onnx2.2onnx推理3.采用tensorrt进行推理(python环境)3.1onnx转engine文件3.2tensorrt推理4.采用tensorrt进行推理(c++环境)5.采用torch2trt进行推理(python环境)在pytorch框架下,可以很方便进行深度学习模型的搭建、训练和保存。当模型训练
- 如何从零开始,训练AI大模型?零基础入门到精通,收藏这一篇就够了
网络安全大白
科技程序员大模型人工智能大模型
导读大模型作为目前最前沿的技术,是如何开发或者训练出来的呢。本文就为大家总结了大模型训练各阶段的最新技术方法,希望对大家有所帮助。1背景根据scalinglaw,模型越大,高质量数据越多,效果越好。但还有一个很直观的情况,随着预训练样本的质量不断提升,训练手段的优化。新的模型,往往效果能轻松反超参数量两倍于它的模型。例如,最新出的minicpm,微信内部评测效果也是非常棒的。跟规模相对接近的2b、
- 百度千帆大模型实战:AI大模型开发的调用指南
AGI大模型学习
百度人工智能大模型教程学习产品经理大模型学习大模型
本节旨在为读者提供一个实用指南,探讨如何有效地利用百度千帆大模型平台的强大功能。从基础的账号注册和密钥申请入手,逐步引领用户通过案例,理解并掌握如何调用文本和图像处理的大模型API,包括但不限于NLP、对话生成、文本续写以及图像生成等领域。1.千帆大模型平台简介在AI蓬勃发展的时代,大模型平台作为支撑大规模数据处理和复杂模型训练的基石,正逐渐成为推动科技创新和产业升级的重要力量。千帆大模型平台,凭
- 【蔬菜识别】Python+深度学习+CNN卷积神经网络算法+TensorFlow+人工智能+模型训练
图像识别深度学习人工智能
一、介绍蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆','大白菜','大葱','莲藕','菠菜','西红柿','韭菜','黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。二、系统效果图片展示三、演示视
- AI赋能灯塔低代码平台,AI应用落地“加速器”
人工智能
AI技术已渗透到各个领域,从智能语音助手到精准医疗影像诊断,从金融风险预测到智能交通管理,其潜力无可限量。然而,将AI技术转化为实际应用却面临重重困难。传统开发方式在算法研究、模型训练、代码编写、系统集成及测试优化等环节,不仅需要专业技术人员的深度参与,还耗费大量时间和资源。这些挑战使得AI应用的落地变得异常艰难。幸运的是,低代码技术的兴起为AI应用的快速落地带来了新的曙光。通过简化开发流程、降低
- 实践深度学习:构建一个简单的图像分类器
是Dream呀
深度学习人工智能
引言深度学习在图像识别领域取得了巨大的成功。本文将指导你如何使用深度学习框架来构建一个简单的图像分类器,我们将以Python和TensorFlow为例,展示从数据准备到模型训练的完整流程。环境准备在开始之前,请确保你的环境中安装了以下工具:Python3.xTensorFlow2.xNumPyMatplotlib(用于数据可视化)你可以通过以下命令安装所需的库:pipinstalltensorfl
- AI换脸技术原理以及为什么需要进行海量次数的模型训练?
码场老菜鸟
人工智能
AI换脸技术通俗点说就是“深度伪造技术”,是基于人工智能,特别是深度学习和生成对抗网络(GANs)的一种技术,能够将一个人的面部特征与另一个人的面部特征进行交换,从而生成非常真实的换脸视频或图像。AI换脸技术的基本原理生成对抗网络(GANs)GANs是AI换脸技术背后的核心算法,它由两个神经网络组成,一个是生成器,负责生成新的图像或视频;另一个是判别器,负责判断生成的图像是否真实。通过不断的“对抗
- Java分布式流处理,flink+kafka实现电商网站个性化商品推荐系统
图苑
分布式javaflink
文章目录戳底部名片,一起变现技术栈选择设计实现思路实现步骤及示例代码1.数据采集2.数据预处理3.特征工程4.模型训练5.结果输出6.前端展示戳底部名片,一起变现在现代电商环境中,用户每天都会浏览大量商品页面,而这些行为数据中蕴藏着丰富的信息。通过分析用户的浏览历史、购买记录以及对特定商品的兴趣程度,我们可以为用户提供更加个性化的商品推荐,从而提升用户体验和转化率。为了实现实时的个性化推荐,我们需
- 唤醒 AI 算力,专有云 ABC Stack 面向企业级智算平台的 GPU 提效实践
百度
从「建好」到「用好」,企业级智算平台借助专有云ABCStack的GPU提效服务,应对大模型业务挑战,唤醒AI算力,加速AI原生业务的落地。01难以一步到位的GPU效能当企业的私有化智算平台项目上线一段时间后,用户普遍会反馈GPU效能相关的问题:将全部资源分配给各个业务部门后,集群全部GPU资源的平均利用率在30%左右。这个指标处于什么水平,是否充分发挥GPU效能?大模型训练的时候,我们会请技术专家
- DeepSeek Coder 填空任务在代码生成和补全中具体是如何实现的?
百态老人
人工智能大数据笔记
DeepSeekCoder在代码生成和补全中的实现主要依赖于其强大的预训练机制和特定的训练任务设计。以下是具体实现细节:数据准备:DeepSeekCoder使用了大规模的训练数据集,包含2万亿个token,其中87%为代码数据,13%为自然语言数据,支持英语和中文。这些数据涵盖了多种编程语言,确保模型能够理解和生成高质量的代码。模型训练:模型通过项目级别的代码语料库进行预训练,使用16K窗口大小和
- 人工智能在制造业的具体应用案例-总纲
局外人_Jia
人工智能c#大数据
人工智能在制造业的具体应用案例,结合C#语言实现的技术方案和示例代码:1.预测性维护(PredictiveMaintenance)通过分析设备传感器数据,预测设备故障并提前安排维护。技术方案数据采集:使用C#通过IoT协议(如MQTT、OPCUA)实时采集设备传感器数据(温度、振动等)。模型训练:使用ML.NET或TensorFlow.NET训练回归模型,预测设备剩余寿命。实时预测:将模型部署到C
- 多线程编程之卫生间
周凡杨
java并发卫生间线程厕所
如大家所知,火车上车厢的卫生间很小,每次只能容纳一个人,一个车厢只有一个卫生间,这个卫生间会被多个人同时使用,在实际使用时,当一个人进入卫生间时则会把卫生间锁上,等出来时打开门,下一个人进去把门锁上,如果有一个人在卫生间内部则别人的人发现门是锁的则只能在外面等待。问题分析:首先问题中有两个实体,一个是人,一个是厕所,所以设计程序时就可以设计两个类。人是多数的,厕所只有一个(暂且模拟的是一个车厢)。
- How to Install GUI to Centos Minimal
sunjing
linuxInstallDesktopGUI
http://www.namhuy.net/475/how-to-install-gui-to-centos-minimal.html
I have centos 6.3 minimal running as web server. I’m looking to install gui to my server to vnc to my server. You can insta
- Shell 函数
daizj
shell函数
Shell 函数
linux shell 可以用户定义函数,然后在shell脚本中可以随便调用。
shell中函数的定义格式如下:
[function] funname [()]{
action;
[return int;]
}
说明:
1、可以带function fun() 定义,也可以直接fun() 定义,不带任何参数。
2、参数返回
- Linux服务器新手操作之一
周凡杨
Linux 简单 操作
1.whoami
当一个用户登录Linux系统之后,也许他想知道自己是发哪个用户登录的。
此时可以使用whoami命令。
[ecuser@HA5-DZ05 ~]$ whoami
e
- 浅谈Socket通信(一)
朱辉辉33
socket
在java中ServerSocket用于服务器端,用来监听端口。通过服务器监听,客户端发送请求,双方建立链接后才能通信。当服务器和客户端建立链接后,两边都会产生一个Socket实例,我们可以通过操作Socket来建立通信。
首先我建立一个ServerSocket对象。当然要导入java.net.ServerSocket包
ServerSock
- 关于框架的简单认识
西蜀石兰
框架
入职两个月多,依然是一个不会写代码的小白,每天的工作就是看代码,写wiki。
前端接触CSS、HTML、JS等语言,一直在用的CS模型,自然免不了数据库的链接及使用,真心涉及框架,项目中用到的BootStrap算一个吧,哦,JQuery只能算半个框架吧,我更觉得它是另外一种语言。
后台一直是纯Java代码,涉及的框架是Quzrtz和log4j。
都说学前端的要知道三大框架,目前node.
- You have an error in your SQL syntax; check the manual that corresponds to your
林鹤霄
You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'option,changed_ids ) values('0ac91f167f754c8cbac00e9e3dc372
- MySQL5.6的my.ini配置
aigo
mysql
注意:以下配置的服务器硬件是:8核16G内存
[client]
port=3306
[mysql]
default-character-set=utf8
[mysqld]
port=3306
basedir=D:/mysql-5.6.21-win
- mysql 全文模糊查找 便捷解决方案
alxw4616
mysql
mysql 全文模糊查找 便捷解决方案
2013/6/14 by 半仙
[email protected]
目的: 项目需求实现模糊查找.
原则: 查询不能超过 1秒.
问题: 目标表中有超过1千万条记录. 使用like '%str%' 进行模糊查询无法达到性能需求.
解决方案: 使用mysql全文索引.
1.全文索引 : MySQL支持全文索引和搜索功能。MySQL中的全文索
- 自定义数据结构 链表(单项 ,双向,环形)
百合不是茶
单项链表双向链表
链表与动态数组的实现方式差不多, 数组适合快速删除某个元素 链表则可以快速的保存数组并且可以是不连续的
单项链表;数据从第一个指向最后一个
实现代码:
//定义动态链表
clas
- threadLocal实例
bijian1013
javathreadjava多线程threadLocal
实例1:
package com.bijian.thread;
public class MyThread extends Thread {
private static ThreadLocal tl = new ThreadLocal() {
protected synchronized Object initialValue() {
return new Inte
- activemq安全设置—设置admin的用户名和密码
bijian1013
javaactivemq
ActiveMQ使用的是jetty服务器, 打开conf/jetty.xml文件,找到
<bean id="adminSecurityConstraint" class="org.eclipse.jetty.util.security.Constraint">
<p
- 【Java范型一】Java范型详解之范型集合和自定义范型类
bit1129
java
本文详细介绍Java的范型,写一篇关于范型的博客原因有两个,前几天要写个范型方法(返回值根据传入的类型而定),竟然想了半天,最后还是从网上找了个范型方法的写法;再者,前一段时间在看Gson, Gson这个JSON包的精华就在于对范型的优雅简单的处理,看它的源代码就比较迷糊,只其然不知其所以然。所以,还是花点时间系统的整理总结下范型吧。
范型内容
范型集合类
范型类
- 【HBase十二】HFile存储的是一个列族的数据
bit1129
hbase
在HBase中,每个HFile存储的是一个表中一个列族的数据,也就是说,当一个表中有多个列簇时,针对每个列簇插入数据,最后产生的数据是多个HFile,每个对应一个列族,通过如下操作验证
1. 建立一个有两个列族的表
create 'members','colfam1','colfam2'
2. 在members表中的colfam1中插入50*5
- Nginx 官方一个配置实例
ronin47
nginx 配置实例
user www www;
worker_processes 5;
error_log logs/error.log;
pid logs/nginx.pid;
worker_rlimit_nofile 8192;
events {
worker_connections 4096;}
http {
include conf/mim
- java-15.输入一颗二元查找树,将该树转换为它的镜像, 即在转换后的二元查找树中,左子树的结点都大于右子树的结点。 用递归和循环
bylijinnan
java
//use recursion
public static void mirrorHelp1(Node node){
if(node==null)return;
swapChild(node);
mirrorHelp1(node.getLeft());
mirrorHelp1(node.getRight());
}
//use no recursion bu
- 返回null还是empty
bylijinnan
javaapachespring编程
第一个问题,函数是应当返回null还是长度为0的数组(或集合)?
第二个问题,函数输入参数不当时,是异常还是返回null?
先看第一个问题
有两个约定我觉得应当遵守:
1.返回零长度的数组或集合而不是null(详见《Effective Java》)
理由就是,如果返回empty,就可以少了很多not-null判断:
List<Person> list
- [科技与项目]工作流厂商的战略机遇期
comsci
工作流
在新的战略平衡形成之前,这里有一个短暂的战略机遇期,只有大概最短6年,最长14年的时间,这段时间就好像我们森林里面的小动物,在秋天中,必须抓紧一切时间存储坚果一样,否则无法熬过漫长的冬季。。。。
在微软,甲骨文,谷歌,IBM,SONY
- 过度设计-举例
cuityang
过度设计
过度设计,需要更多设计时间和测试成本,如无必要,还是尽量简洁一些好。
未来的事情,比如 访问量,比如数据库的容量,比如是否需要改成分布式 都是无法预料的
再举一个例子,对闰年的判断逻辑:
1、 if($Year%4==0) return True; else return Fasle;
2、if ( ($Year%4==0 &am
- java进阶,《Java性能优化权威指南》试读
darkblue086
java性能优化
记得当年随意读了微软出版社的.NET 2.0应用程序调试,才发现调试器如此强大,应用程序开发调试其实真的简单了很多,不仅仅是因为里面介绍了很多调试器工具的使用,更是因为里面寻找问题并重现问题的思想让我震撼,时隔多年,Java已经如日中天,成为许多大型企业应用的首选,而今天,这本《Java性能优化权威指南》让我再次找到了这种感觉,从不经意的开发过程让我刮目相看,原来性能调优不是简单地看看热点在哪里,
- 网络学习笔记初识OSI七层模型与TCP协议
dcj3sjt126com
学习笔记
协议:在计算机网络中通信各方面所达成的、共同遵守和执行的一系列约定 计算机网络的体系结构:计算机网络的层次结构和各层协议的集合。 两类服务: 面向连接的服务通信双方在通信之前先建立某种状态,并在通信过程中维持这种状态的变化,同时为服务对象预先分配一定的资源。这种服务叫做面向连接的服务。 面向无连接的服务通信双方在通信前后不建立和维持状态,不为服务对象
- mac中用命令行运行mysql
dcj3sjt126com
mysqllinuxmac
参考这篇博客:http://www.cnblogs.com/macro-cheng/archive/2011/10/25/mysql-001.html 感觉workbench不好用(有点先入为主了)。
1,安装mysql
在mysql的官方网站下载 mysql 5.5.23 http://www.mysql.com/downloads/mysql/,根据我的机器的配置情况选择了64
- MongDB查询(1)——基本查询[五]
eksliang
mongodbmongodb 查询mongodb find
MongDB查询
转载请出自出处:http://eksliang.iteye.com/blog/2174452 一、find简介
MongoDB中使用find来进行查询。
API:如下
function ( query , fields , limit , skip, batchSize, options ){.....}
参数含义:
query:查询参数
fie
- base64,加密解密 经融加密,对接
y806839048
经融加密对接
String data0 = new String(Base64.encode(bo.getPaymentResult().getBytes(("GBK"))));
String data1 = new String(Base64.decode(data0.toCharArray()),"GBK");
// 注意编码格式,注意用于加密,解密的要是同
- JavaWeb之JSP概述
ihuning
javaweb
什么是JSP?为什么使用JSP?
JSP表示Java Server Page,即嵌有Java代码的HTML页面。使用JSP是因为在HTML中嵌入Java代码比在Java代码中拼接字符串更容易、更方便和更高效。
JSP起源
在很多动态网页中,绝大部分内容都是固定不变的,只有局部内容需要动态产生和改变。
如果使用Servl
- apple watch 指南
啸笑天
apple
1. 文档
WatchKit Programming Guide(中译在线版 By @CocoaChina) 译文 译者 原文 概览 - 开始为 Apple Watch 进行开发 @星夜暮晨 Overview - Developing for Apple Watch 概览 - 配置 Xcode 项目 - Overview - Configuring Yo
- java经典的基础题目
macroli
java编程
1.列举出 10个JAVA语言的优势 a:免费,开源,跨平台(平台独立性),简单易用,功能完善,面向对象,健壮性,多线程,结构中立,企业应用的成熟平台, 无线应用 2.列举出JAVA中10个面向对象编程的术语 a:包,类,接口,对象,属性,方法,构造器,继承,封装,多态,抽象,范型 3.列举出JAVA中6个比较常用的包 Java.lang;java.util;java.io;java.sql;ja
- 你所不知道神奇的js replace正则表达式
qiaolevip
每天进步一点点学习永无止境纵观千象regex
var v = 'C9CFBAA3CAD0';
console.log(v);
var arr = v.split('');
for (var i = 0; i < arr.length; i ++) {
if (i % 2 == 0) arr[i] = '%' + arr[i];
}
console.log(arr.join(''));
console.log(v.r
- [一起学Hive]之十五-分析Hive表和分区的统计信息(Statistics)
superlxw1234
hivehive分析表hive统计信息hive Statistics
关键字:Hive统计信息、分析Hive表、Hive Statistics
类似于Oracle的分析表,Hive中也提供了分析表和分区的功能,通过自动和手动分析Hive表,将Hive表的一些统计信息存储到元数据中。
表和分区的统计信息主要包括:行数、文件数、原始数据大小、所占存储大小、最后一次操作时间等;
14.1 新表的统计信息
对于一个新创建
- Spring Boot 1.2.5 发布
wiselyman
spring boot
Spring Boot 1.2.5已在7月2日发布,现在可以从spring的maven库和maven中心库下载。
这个版本是一个维护的发布版,主要是一些修复以及将Spring的依赖提升至4.1.7(包含重要的安全修复)。
官方建议所有的Spring Boot用户升级这个版本。
项目首页 | 源