- 什么是RFM模型
走过冬季
学习笔记大数据数据分析
RFM模型是客户价值分析中一种经典且实用的量化模型,它通过三个关键维度评估用户价值,帮助企业识别最有价值的客户群体。名称RFM由三个核心指标的英文首字母组成:R(Recency)-最近一次消费时间定义:用户上一次发生交易行为距今的时间长度(如多少天前)。意义:衡量用户的活跃度和流失风险。R值越小(最近有消费),说明用户越活跃,流失风险越低;R值越大(很久没消费),用户流失风险越高。母婴场景示例:一
- 数据分析常用指标名词解释及计算公式
走过冬季
学习笔记数据分析大数据
数据分析中有大量常用指标,它们帮助我们量化业务表现、用户行为、产品健康度等。下面是一些核心指标的名词解释及计算方式,按常见类别分类:一、流量与用户规模指标页面浏览量名词解释:用户访问网站或应用时,每次加载或刷新一个页面就算一次PV。它衡量的是页面被打开的总次数。计算方式:PV=∑(所有页面被加载的次数)(通常由埋点或日志直接统计)独立访客数名词解释:在特定时间范围内(如一天、一周、一月),访问网站
- 24GB GPU 中的 DeepSeek R1:Unsloth AI 针对 671B 参数模型进行动态量化
知识大胖
NVIDIAGPU和大语言模型开发教程人工智能deepseekollama
简介最初的DeepSeekR1是一个拥有6710亿个参数的语言模型,UnslothAI团队对其进行了动态量化,将模型大小减少了80%(从720GB减少到131GB),同时保持了强大的性能。当添加模型卸载功能时,该模型可以在24GBVRAM下以低令牌/秒的推理速度运行。推荐文章《本地构建AI智能分析助手之01快速安装,使用PandasAI和Ollama进行数据分析,用自然语言向你公司的数据提问为决策
- 在 Obsidian 中本地使用 DeepSeek — 无需互联网!
知识大胖
NVIDIAGPU和大语言模型开发教程人工智能deepseek
简介您是否想在Obsidian内免费使用类似于ChatGPT的本地LLM?如果是,那么本指南适合您!我将引导您完成在Obsidian中安装和使用DeepSeek-R1模型的确切步骤,这样您就可以在笔记中拥有一个由AI驱动的第二大脑。推荐文章《24GBGPU中的DeepSeekR1:UnslothAI针对671B参数模型进行动态量化》权重1,DeepSeek类《在RaspberryPi上运行语音识别
- 卫星分析系列之 使用卫星图像量化野火烧毁面积 在 Google Colab 中使用 Python 使用 Sentinel-2 图像确定森林火灾烧毁面积
知识大胖
NVIDIAGPU和大语言模型开发教程pythonsentinel开发语言
简介几年前,当大多数气候模型预测如果我们不采取必要措施,洪水、热浪和野火将会发生更多时,我没想到这些不寻常的灾难现象会成为常见事件。其中,野火每年摧毁大量森林面积。如果你搜索不同地方的重大野火表格,你会发现令人震惊的统计数据,显示由于野火,地球上有多少森林面积正在消失。在本教程中,我将结合我已经发表过的关于下载、处理卫星图像和可视化野火的故事,量化加州发生的其中一场重大野火的烧毁面积。与之前的帖子
- 在mac m1基于llama.cpp运行deepseek
lama.cpp是一个高效的机器学习推理库,目标是在各种硬件上实现LLM推断,保持最小设置和最先进性能。llama.cpp支持1.5位、2位、3位、4位、5位、6位和8位整数量化,通过ARMNEON、Accelerate和Metal支持Apple芯片,使得在MACM1处理器上运行Deepseek大模型成为可能。1下载llama.cppgitclonehttps://github.com/ggerg
- 短剧小程序开发全攻略:从0到1打造爆款内容平台
weixin_lynhgworld
小程序短剧
核心内容:行业趋势分析:短剧市场年增长率超300%,用户规模突破5亿,抖音、快手等平台加速布局。小程序成为短剧分发核心渠道:轻量化、低成本、社交裂变优势显著。开发核心功能模块:内容管理:支持多格式上传、分集管理、标签分类。播放体验优化:弹幕互动、倍速播放、清晰度切换、离线缓存。付费系统:单集付费、会员订阅、广告解锁等多元化盈利模式。社交裂变:分享奖励、邀请排行榜、拼团观影功能。技术实现难点:视频流
- 全网最全100道C语言高频经典面试题及答案解析:C语言程序员面试题库分类总结
猿享天开
学懂C语言-C语言从入门到精通c语言c++面试
前言在计算科学领域,C语言犹如一座横跨硬件与软件的桥梁——其简洁的语法背后,承载着操作系统、数据库、嵌入式系统等基础软件的运行命脉。当开发者面对大厂面试中"用户态与内核态切换的开销量化"或"自旋锁在NUMA架构下的性能陷阱"等深度问题时,仅凭教科书知识往往难以应对。本文正是为解决这一痛点而生。我们摒弃传统面试题集的简单罗列模式,精选100个直指系统编程本质的问题,每个案例均包含:工业级场景还原:基
- OpenCV探索之旅:多尺度视觉与形状的灵魂--图像金字塔与轮廓分析
在我们学会用Canny算法勾勒处世界的轮廓之后,一个更深层次的问题摆在了面前:这些由像素组成的线条,如何才能被赋予“生命”,成为我们能够理解和分析的“形状”?如果一个物体在图像中时大时小,我们又该如何稳定地识别它?欢迎来到本次的探索之旅。我们将建造两种强大的“金字塔”,赋予我们跨越尺度的“鹰之眼”;然后,我们将不仅仅是找到轮廓,更要深入其内部,测量它的面积、周长,找到它的重心,甚至量化它的“形状”
- 【读书笔记】「等到 Linux 6.17 就分手」:Bcachefs 背后的技术与流程之争
CodeWithMe
读书笔记linuxlinux服务器运维
「等到Linux6.17就分手」:Bcachefs背后的技术与流程之争“我真的不太愿意继续参与。而我们唯一真正达成一致的,大概就是——‘我们已经结束了’。”——LinusTorvalds最近,Linux内核社区再次爆发激烈争论,主角是近年备受关注的新一代文件系统——Bcachefs,以及它的作者KentOverstreet与内核“守门人”LinusTorvalds之间的冲突。这场争议的焦点,并不在
- YOLOv8 环境监测五大场景 —— 二、 森林火灾早期预警 之无人机巡逻监测 详细解释及代码完整示例
路飞VS草帽
YOLOv8原理与源代码讲解---六大章YOLOv各版本的应用详细说明及代码示例环境监测五大场景YOLO无人机环境监测森林火灾早期预警无人机巡逻监测YOLOv8
YOLOv8无人机森林火灾巡逻监测系统系统架构设计无人机火灾监测系统组成:1.飞行平台-多旋翼无人机(续航≥60分钟)-双光吊舱(可见光+红外)-RTK高精度定位-4G/5G数据链2.机载计算单元-JetsonOrinNX(AI加速)-轻量化YOLOv8模型-实时火情分析3.地面控制站-飞行路径规划-实时视频监控-火情预警系统4.云端协同-多机任务分配-火势扩散预测-应急资源调度完整代码实现1.无
- 【个人思考】如何理解量化交易与做空?初学者必读的金融交易入门指南
姚瑞南Raynan
个人思考人工智能AIGC
本文原创作者:姚瑞南AI-agent大模型运营专家/音乐人/野生穿搭model,先后任职于美团、猎聘等中大厂AI训练专家和智能运营专家岗;多年人工智能行业智能产品运营及大模型落地经验,拥有AI外呼方向国家专利与PMP项目管理证书。(转载需经授权)目录金融交易中的一些常见概念:量化交易、做空以及更多1️⃣量化交易:数据驱动的交易方式2️⃣做空:预测价格下跌赚取差价个人做空的理解:借西瓜赚差价3️⃣做
- 小型化与低功耗工业数据采集卡的在哪些行业有强劲需求?
番茄老夫子
数据采集卡
小型化与低功耗工业数据采集卡在汽车、医疗、能源等多个行业有着强劲需求,以下是具体介绍:汽车行业:在汽车电子系统中,如电池管理系统、电机控制和自动驾驶系统等,需要采集大量传感器数据。小型化低功耗的数据采集卡可轻松嵌入汽车内部紧凑空间,且能在车辆长时间运行中保持低能耗,例如用于实时监控车载网络信号,优化ECU性能,同时满足汽车对零部件小型化、轻量化以及节能的要求。医疗行业:医疗设备如呼吸机、心脏监测仪
- Manus AI与多语言手写识别
ManusAI与多语言手写识别背景与概述手写识别技术的发展现状与挑战ManusAI的核心技术与应用场景多语言手写识别的市场需求与难点ManusAI的技术架构深度学习在手写识别中的应用多语言支持的模型设计数据预处理与特征提取方法多语言手写识别的关键挑战不同语言字符的多样性处理上下文语义与书写风格适应性低资源语言的训练数据获取解决方案与优化策略迁移学习在多语言任务中的应用端到端模型的优化与轻量化用户反
- 中药细粒度图像分类
小lo想吃棒棒糖
分类数据挖掘人工智能
在细粒度图像分类(FGVC)领域,BilinearCNN(BCNN)模型因其能够捕捉图像中的局部特征交互而受到广泛关注。该模型通过双线性池化操作将两个不同CNN提取的特征进行外积运算,从而获得更加丰富的特征表示,这对于区分外观相似但属于不同子类别的物体尤其有效。然而,BCNN通常计算成本较高,限制了其在移动设备或资源受限环境下的应用。为了实现轻量化并保持高精度的细粒度分类,可以考虑将MobileN
- 使用Qlib基于LightGBM预测沪深300涨跌
DeepReinforce
量化投资
Qlib是一个专为量化金融和算法交易研究设计的开源库。本文配置一个基于LightGBM的梯度提升决策树(GBDT)模型,并使用金融数据集(包含158个技术指标特征)进行训练和预测。1.导入必要的模块pythonCollapseWrapRunCopyfromqlib.contrib.model.gbdtimportLGBModelfromqlib.contrib.data.handlerimport
- 专知智库数据要素全链路基础设施:数字经济时代的“数据生态操作系统”
人形机器人专利池研究中心
数据场景生态首席数据官3.0数据场景架构师首席数据官3.0数据零件架构师数据场景架构师
专知智库数据要素全链路基础设施:数字经济时代的“数据生态操作系统”引言:数据要素的“生态困局”——从“资源孤岛”到“价值共生”的破局之道在数字经济时代,数据已从“企业私有财产”跃升为“社会公共资源”,成为驱动产业升级、创新商业模式的核心生产要素。但数据要素的价值释放,始终面临着三大核心矛盾:“散”——数据分散在各主体,难以整合;“死”——数据价值难量化,无法定价;“疑”——数据流通缺信任,交易成本
- Semantic text 就是那么强大,还附带一包( BBQ )薯片!配有可配置的分块设置和索引选项。
Elastic 中国社区官方博客
ElasticsearchAI大数据elasticsearch搜索引擎全文检索人工智能ai图搜索
作者:来自ElasticKathleenDeRusso语义文本搜索现在可以自定义,支持可配置的分块设置和索引选项,用于自定义向量量化,使semantic_text在专业用例中更强大。Elasticsearch拥有大量新功能,帮助你为你的用例构建最佳搜索解决方案。深入查看我们的示例笔记本以了解更多信息,开始免费云试用,或者立即在本地机器上体验Elastic。随着Elasticsearch8.18和9
- YOLOv11模型轻量化挑战技术文章大纲
程序猿全栈の董(董翔)
githubYOLOv11
模型轻量化的背景与意义目标检测模型YOLOv11的性能与应用场景轻量化的必要性:边缘设备部署、实时性需求、计算资源限制轻量化面临的挑战:精度与速度的权衡、模型压缩方法的选择YOLOv11的轻量化技术方向网络结构优化:深度可分离卷积、分组卷积、瓶颈设计模型剪枝:结构化剪枝与非结构化剪枝策略知识蒸馏:教师-学生模型框架与特征匹配方法量化与低比特压缩:FP16/INT8量化与二值化网络轻量化实现的具体方
- KTO(Kahneman-Tversky Optimization)技术详解与工程实现
DK_Allen
大模型深度学习pytorch人工智能KTO
KTO(Kahneman-TverskyOptimization)技术详解与工程实现一、KTO核心思想KTO是基于行为经济学前景理论(ProspectTheory)的偏好优化方法,突破传统偏好学习需要成对数据的限制,仅需单样本绝对标注(好/坏)即可优化模型。其创新性在于:损失函数设计:将人类对"收益"和"损失"的非对称心理反应量化数据效率:无需构建偏好对(y_w>y_l),直接利用松散标注二、KT
- PostgreSQL 16 Administration Cookbook 读书笔记:第1章 First Steps
本章为PostgreSQL简介及如何用psql和pgAdminGUI连接PostgreSQL。1.PostgreSQL16简介开源,低TCO,30多年持续开发,符合SQL:2023标准,高度可扩展,多模。1.1PostgreSQL有何不同?PostgreSQL的功能集与Oracle或SQLServer的相似度比与MySQL更高。PostgreSQL知名用户包括苹果、巴斯夫、基因泰克、Heroku、
- 更新!「3D Web轻量化引擎」HOOPS Communicator发布2025.2.0版本:全新WebViewer用户界面、
工业3D_大熊
3DCAD开发工具3d3D建模3D模型轻量化工业3D3D数据格式转换3D模型可视化3DWeb轻量化
3DWeb轻量化引擎HOOPSCommunicator此前发布2025.2.0版本!此次更新聚焦于提升用户体验和稳定性,通过引入创新的界面设计以及对若干问题的修复,确保用户能够更加高效、流畅地处理3D数据可视化任务。以下将详细阐述本次更新的核心内容。一、增强功能本次更新的重点在于对WebViewer用户界面的革新。我们精心打造了全新的WebViewerUI,其核心基于WebComponents技术
- 量化价值投资中的深度学习技术:TensorFlow实战
量化价值投资中的深度学习技术:TensorFlow实战关键词:量化价值投资,深度学习,TensorFlow,股票预测,因子模型,LSTM神经网络,量化策略摘要:本文将带你走进"量化价值投资"与"深度学习"的交叉地带,用小学生都能听懂的语言解释复杂概念,再通过手把手的TensorFlow实战案例,教你如何用AI技术挖掘股票市场中的价值宝藏。我们会从传统价值投资的痛点出发,揭示深度学习如何像"超级分析
- 上下文工程:AI 智能体架构落地的关键新技术
一休哥助手
人工智能人工智能架构
摘要随着大语言模型(LLM)驱动的智能体(Agent)逐渐成为下一代人机交互的核心范式,上下文管理已成为决定智能体性能与可靠性的关键瓶颈。本文提出“上下文工程”(ContextEngineering)作为智能体架构落地的核心技术方向,系统阐述其在解决长上下文依赖、多轮交互一致性、动态知识更新等挑战中的核心作用。通过分层架构设计、动态压缩策略与向量化增强技术,上下文工程显著提升智能体的记忆效率与推理
- 目标检测YOLO实战应用案例100讲-基于深度学习的自动驾驶目标检测算法研究(续)
林聪木
目标检测YOLO深度学习
目录基于双蓝图卷积的轻量化自动驾驶目标检测算法5.1引言5.2DarkNet53网络冗余性分析5.3双蓝图卷积网络5.4实验结果及分析基于深度学习的自动驾驶目标检测算法研究与应用传统的目标检测算法目标检测基线算法性能对比与选择相关理论和算法基础2.1引言2.2人工神经网络2.3FCOS目标检测算法2.4复杂交通场景下的目标检测难点与FCOS改进方案基于FCOS的目标检测算法改进3.1引言3.2Re
- 【FFT】基于FPGA的FFT傅里叶变换和相位计算系统设计
fpga和matlab
★FPGA项目经验板块19:信号发生器fpga开发FFT相位计算
1.软件版本ISE14.7,modeslimSE,10.1c2.系统仿真与分析第1步:信号源的产生主要通过rom将产生的数据保存到rom中,然后,我们再仿真的时候调用即可。这个部分仿真效果如下所示,你给的程序中,这个部分主要有两个数据源,一个是1025,一个是N为1024,我们这里分别将这两个数据量化之后保存到rom中,仿真如下所示:
- Apache Cloudberry 向量化实践(二):如何识别和定位向量化系统的性能瓶颈?
数据库
如何系统性识别并定位向量化执行链路中的性能瓶颈?本文将结合分析方法论与实践案例,帮助大家建立起优化的基本盘。性能问题从何而来?向量化系统中的性能瓶颈往往不易察觉。它可能是某个操作符计算效率低下,也可能是某次调度延迟过大,甚至是系统某一阶段发生了资源争抢。大致来看,性能瓶颈来源可分为以下几类:计算瓶颈(on-CPU):如表达式编译低效、算子计算逻辑复杂等。等待瓶颈(off-CPU):如线程调度延迟、
- 计算机视觉:Transformer的轻量化与加速策略
xcLeigh
计算机视觉CV计算机视觉transformer人工智能AI策略
计算机视觉:Transformer的轻量化与加速策略一、前言二、Transformer基础概念回顾2.1Transformer架构概述2.2自注意力机制原理三、Transformer轻量化策略3.1模型结构优化3.1.1减少层数和头数3.1.2优化Patch大小3.2参数共享与剪枝3.2.1参数共享3.2.2剪枝3.3知识蒸馏四、Transformer加速策略4.1模型量化4.2.2TPU加速4.
- AI产品经理技术篇:从传统AI到生成式AI,解密大模型的核心概念
让我看看好学吗
人工智能产品经理学习深度学习自然语言处理
在人工智能技术飞速发展的今天,AI产品经理不仅需要理解业务逻辑,还需深入技术底层,把握从传统AI到生成式AI的演进脉络。传统AI以分类、预测和规则驱动为核心,而生成式AI则颠覆了这一范式,通过大模型实现内容创作、对话生成等创造性任务。这种转变背后,是参数规模、模型架构和训练方式的根本性革新。作为AI产品经理,理解大模型的核心概念至关重要。从“参数”的意义到“Token”的向量化,从Transfor
- 人工智能-基础篇-18-什么是RAG(检索增强生成:知识库+向量化技术+大语言模型LLM整合的技术框架)
weisian151
人工智能人工智能语言模型自然语言处理
RAG(Retrieval-AugmentedGeneration,检索增强生成)是一种结合外部知识检索与大语言模型(LLM)生成能力的技术框架,旨在提升生成式AI在问答、内容创作等任务中的准确性、实时性和领域适应性。1、核心概念大语言模型(LLM)的两大局限性:时效性不足:LLM的训练数据截止于某一时间点,无法获取最新信息(如2025年后的新事件)。知识幻觉:当问题超出模型训练数据范围时,LLM
- 关于旗正规则引擎规则中的上传和下载问题
何必如此
文件下载压缩jsp文件上传
文件的上传下载都是数据流的输入输出,大致流程都是一样的。
一、文件打包下载
1.文件写入压缩包
string mainPath="D:\upload\"; 下载路径
string tmpfileName=jar.zip; &n
- 【Spark九十九】Spark Streaming的batch interval时间内的数据流转源码分析
bit1129
Stream
以如下代码为例(SocketInputDStream):
Spark Streaming从Socket读取数据的代码是在SocketReceiver的receive方法中,撇开异常情况不谈(Receiver有重连机制,restart方法,默认情况下在Receiver挂了之后,间隔两秒钟重新建立Socket连接),读取到的数据通过调用store(textRead)方法进行存储。数据
- spark master web ui 端口8080被占用解决方法
daizj
8080端口占用sparkmaster web ui
spark master web ui 默认端口为8080,当系统有其它程序也在使用该接口时,启动master时也不会报错,spark自己会改用其它端口,自动端口号加1,但为了可以控制到指定的端口,我们可以自行设置,修改方法:
1、cd SPARK_HOME/sbin
2、vi start-master.sh
3、定位到下面部分
- oracle_执行计划_谓词信息和数据获取
周凡杨
oracle执行计划
oracle_执行计划_谓词信息和数据获取(上)
一:简要说明
在查看执行计划的信息中,经常会看到两个谓词filter和access,它们的区别是什么,理解了这两个词对我们解读Oracle的执行计划信息会有所帮助。
简单说,执行计划如果显示是access,就表示这个谓词条件的值将会影响数据的访问路径(表还是索引),而filter表示谓词条件的值并不会影响数据访问路径,只起到
- spring中datasource配置
g21121
dataSource
datasource配置有很多种,我介绍的一种是采用c3p0的,它的百科地址是:
http://baike.baidu.com/view/920062.htm
<!-- spring加载资源文件 -->
<bean name="propertiesConfig"
class="org.springframework.b
- web报表工具FineReport使用中遇到的常见报错及解决办法(三)
老A不折腾
finereportFAQ报表软件
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、repeated column width is largerthan paper width:
这个看这段话应该是很好理解的。比如做的模板页面宽度只能放
- mysql 用户管理
墙头上一根草
linuxmysqluser
1.新建用户 //登录MYSQL@>mysql -u root -p@>密码//创建用户mysql> insert into mysql.user(Host,User,Password) values(‘localhost’,'jeecn’,password(‘jeecn’));//刷新系统权限表mysql>flush privileges;这样就创建了一个名为:
- 关于使用Spring导致c3p0数据库死锁问题
aijuans
springSpring 入门Spring 实例Spring3Spring 教程
这个问题我实在是为整个 springsource 的员工蒙羞
如果大家使用 spring 控制事务,使用 Open Session In View 模式,
com.mchange.v2.resourcepool.TimeoutException: A client timed out while waiting to acquire a resource from com.mchange.
- 百度词库联想
annan211
百度
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>RunJS</title&g
- int数据与byte之间的相互转换实现代码
百合不是茶
位移int转bytebyte转int基本数据类型的实现
在BMP文件和文件压缩时需要用到的int与byte转换,现将理解的贴出来;
主要是要理解;位移等概念 http://baihe747.iteye.com/blog/2078029
int转byte;
byte转int;
/**
* 字节转成int,int转成字节
* @author Administrator
*
- 简单模拟实现数据库连接池
bijian1013
javathreadjava多线程简单模拟实现数据库连接池
简单模拟实现数据库连接池
实例1:
package com.bijian.thread;
public class DB {
//private static final int MAX_COUNT = 10;
private static final DB instance = new DB();
private int count = 0;
private i
- 一种基于Weblogic容器的鉴权设计
bijian1013
javaweblogic
服务器对请求的鉴权可以在请求头中加Authorization之类的key,将用户名、密码保存到此key对应的value中,当然对于用户名、密码这种高机密的信息,应该对其进行加砂加密等,最简单的方法如下:
String vuser_id = "weblogic";
String vuse
- 【RPC框架Hessian二】Hessian 对象序列化和反序列化
bit1129
hessian
任何一个对象从一个JVM传输到另一个JVM,都要经过序列化为二进制数据(或者字符串等其他格式,比如JSON),然后在反序列化为Java对象,这最后都是通过二进制的数据在不同的JVM之间传输(一般是通过Socket和二进制的数据传输),本文定义一个比较符合工作中。
1. 定义三个POJO
Person类
package com.tom.hes
- 【Hadoop十四】Hadoop提供的脚本的功能
bit1129
hadoop
1. hadoop-daemon.sh
1.1 启动HDFS
./hadoop-daemon.sh start namenode
./hadoop-daemon.sh start datanode
通过这种逐步启动的方式,比start-all.sh方式少了一个SecondaryNameNode进程,这不影响Hadoop的使用,其实在 Hadoop2.0中,SecondaryNa
- 中国互联网走在“灰度”上
ronin47
管理 灰度
中国互联网走在“灰度”上(转)
文/孕峰
第一次听说灰度这个词,是任正非说新型管理者所需要的素质。第二次听说是来自马化腾。似乎其他人包括马云也用不同的语言说过类似的意思。
灰度这个词所包含的意义和视野是广远的。要理解这个词,可能同样要用“灰度”的心态。灰度的反面,是规规矩矩,清清楚楚,泾渭分明,严谨条理,是决不妥协,不转弯,认死理。黑白分明不是灰度,像彩虹那样
- java-51-输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
bylijinnan
java
public class PrintMatrixClockwisely {
/**
* Q51.输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
例如:如果输入如下矩阵:
1 2 3 4
5 6 7 8
9
- mongoDB 用户管理
开窍的石头
mongoDB用户管理
1:添加用户
第一次设置用户需要进入admin数据库下设置超级用户(use admin)
db.addUsr({user:'useName',pwd:'111111',roles:[readWrite,dbAdmin]});
第一个参数用户的名字
第二个参数
- [游戏与生活]玩暗黑破坏神3的一些问题
comsci
生活
暗黑破坏神3是有史以来最让人激动的游戏。。。。但是有几个问题需要我们注意
玩这个游戏的时间,每天不要超过一个小时,且每次玩游戏最好在白天
结束游戏之后,最好在太阳下面来晒一下身上的暗黑气息,让自己恢复人的生气
&nb
- java 二维数组如何存入数据库
cuiyadll
java
using System;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Xml;
using System.Xml.Serialization;
using System.IO;
namespace WindowsFormsApplication1
{
- 本地事务和全局事务Local Transaction and Global Transaction(JTA)
darrenzhu
javaspringlocalglobaltransaction
Configuring Spring and JTA without full Java EE
http://spring.io/blog/2011/08/15/configuring-spring-and-jta-without-full-java-ee/
Spring doc -Transaction Management
http://docs.spring.io/spri
- Linux命令之alias - 设置命令的别名,让 Linux 命令更简练
dcj3sjt126com
linuxalias
用途说明
设置命令的别名。在linux系统中如果命令太长又不符合用户的习惯,那么我们可以为它指定一个别名。虽然可以为命令建立“链接”解决长文件名的问 题,但对于带命令行参数的命令,链接就无能为力了。而指定别名则可以解决此类所有问题【1】。常用别名来简化ssh登录【见示例三】,使长命令变短,使常 用的长命令行变短,强制执行命令时询问等。
常用参数
格式:alias
格式:ali
- yii2 restful web服务[格式响应]
dcj3sjt126com
PHPyii2
响应格式
当处理一个 RESTful API 请求时, 一个应用程序通常需要如下步骤 来处理响应格式:
确定可能影响响应格式的各种因素, 例如媒介类型, 语言, 版本, 等等。 这个过程也被称为 content negotiation。
资源对象转换为数组, 如在 Resources 部分中所描述的。 通过 [[yii\rest\Serializer]]
- MongoDB索引调优(2)——[十]
eksliang
mongodbMongoDB索引优化
转载请出自出处:http://eksliang.iteye.com/blog/2178555 一、概述
上一篇文档中也说明了,MongoDB的索引几乎与关系型数据库的索引一模一样,优化关系型数据库的技巧通用适合MongoDB,所有这里只讲MongoDB需要注意的地方 二、索引内嵌文档
可以在嵌套文档的键上建立索引,方式与正常
- 当滑动到顶部和底部时,实现Item的分离效果的ListView
gundumw100
android
拉动ListView,Item之间的间距会变大,释放后恢复原样;
package cn.tangdada.tangbang.widget;
import android.annotation.TargetApi;
import android.content.Context;
import android.content.res.TypedArray;
import andr
- 程序员用HTML5制作的爱心树表白动画
ini
JavaScriptjqueryWebhtml5css
体验效果:http://keleyi.com/keleyi/phtml/html5/31.htmHTML代码如下:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"><head><meta charset="UTF-8" >
<ti
- 预装windows 8 系统GPT模式的ThinkPad T440改装64位 windows 7旗舰版
kakajw
ThinkPad预装改装windows 7windows 8
该教程具有普遍参考性,特别适用于联想的机器,其他品牌机器的处理过程也大同小异。
该教程是个人多次尝试和总结的结果,实用性强,推荐给需要的人!
缘由
小弟最近入手笔记本ThinkPad T440,但是特别不能习惯笔记本出厂预装的Windows 8系统,而且厂商自作聪明地预装了一堆没用的应用软件,消耗不少的系统资源(本本的内存为4G,系统启动完成时,物理内存占用比
- Nginx学习笔记
mcj8089
nginx
一、安装nginx 1、在nginx官方网站下载一个包,下载地址是:
http://nginx.org/download/nginx-1.4.2.tar.gz
2、WinSCP(ftp上传工
- mongodb 聚合查询每天论坛链接点击次数
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 18 */
{
"_id" : ObjectId("5596414cbe4d73a327e50274"),
"msgType" : "text",
"sendTime" : ISODate("2015-07-03T08:01:16.000Z"
- java术语(PO/POJO/VO/BO/DAO/DTO)
Luob.
DAOPOJODTOpoVO BO
PO(persistant object) 持久对象
在o/r 映射的时候出现的概念,如果没有o/r映射,就没有这个概念存在了.通常对应数据模型(数据库),本身还有部分业务逻辑的处理.可以看成是与数据库中的表相映射的java对象.最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合.PO中应该不包含任何对数据库的操作.
VO(value object) 值对象
通
- 算法复杂度
Wuaner
Algorithm
Time Complexity & Big-O:
http://stackoverflow.com/questions/487258/plain-english-explanation-of-big-o
http://bigocheatsheet.com/
http://www.sitepoint.com/time-complexity-algorithms/