// opencv3 knn 的实例
// 样本是随机数生成的,不需要额外数据集。
// knn : k 是要设定的参数,意义是:将待测样本X最近的k个点进行比较,A类型的点最多,那么认为待测样本X是A类型。
// 环境 : opencv3.0.0 \ vs2012 32 bits \ win7
// 环境搭建:
// # 1. 新建工程,opencv基本配置
// # 2. 将 opencv\source\module\ml\src 中的 knearest.cpp 复制到新建的工程目录下,文件名改为 knearest.hpp
// # 3. 包含该头文件
// # 4. mian函数修改如下
// # 5. 编译运行。
//
#include
#include
#include
#include
#include
using namespace cv::ml;
int main( )
{
const int K = 10;
int i, j, k, accuracy;
float response;
int train_sample_count = 100;
cv::RNG rng_state(-1);
cv::Mat trainData(train_sample_count,2,CV_32FC1);
cv::Mat trainClasses(train_sample_count,1,CV_32FC1); /// labels
cv::Mat img(cv::Size(500,500),CV_8UC3,cv::Scalar::all (0));
float _sample[2];
cv::Mat sample(1,2,CV_32FC1,_sample); /// just 1 sample
cv::Mat trainData1, trainData2, trainClasses1, trainClasses2;
// form the training samples
trainData1 = trainData.rowRange (0,train_sample_count/2);
rng_state.fill (trainData1,CV_RAND_NORMAL,cv::Scalar(200,200),cv::Scalar(50,50));
trainData2 = trainData.rowRange (train_sample_count/2,train_sample_count);
rng_state.fill (trainData2,CV_RAND_NORMAL,cv::Scalar(300,300),cv::Scalar(50,50));
trainClasses1 = trainClasses.rowRange (0,train_sample_count/2);
trainClasses1.setTo (1);
trainClasses2 = trainClasses.rowRange (train_sample_count/2,train_sample_count);
trainClasses2.setTo (2);
// learn classifier
//// cv::ml::KNearest knn( trainData, trainClasses, cv::Mat(), false, K );
cv::Ptr knn = KNearest::create();
knn->setDefaultK(5);
knn->setIsClassifier(true);
cv::Ptr tData = TrainData::create(trainData, ROW_SAMPLE, trainClasses);
knn->train(tData);
cv::Mat nearests( 1, K, CV_32FC1); //// closet k points
for( i = 0; i < img.rows; i++ ) //// 将图中各点作为样本。红是1类型置信值高的,绿是2类型置信值高的,棕色是不确定
{
for( j = 0; j < img.cols; j++ )
{
sample.at(0,0) = (float)j;
sample.at(0,1) = (float)i;
cv::Mat result(sample.size(), CV_32FC1);
// estimate the response and get the neighbors' labels
/// response = knn->findNearest(sample,K,0,0,&nearests,0);
response = knn->findNearest(sample, K, result, nearests);
// compute the number of neighbors representing the majority
for( k = 0, accuracy = 0; k < K; k++ )
{
if( nearests.at(0,k) == response)
accuracy++; /// 最近邻的k个中,该类型的占比
}
// highlight the pixel depending on the accuracy (or confidence)
img.at(i,j) = response == 1 ?
(accuracy > 5 ? cv::Vec3b(0,0,180) : cv::Vec3b(0,120,180)) :
(accuracy > 5 ? cv::Vec3b(0,180,0) : cv::Vec3b(0,120,120));
}
}
// display the original training samples
for( i = 0; i < train_sample_count/2; i++ ) ///// 圈 是样本
{
cv::Point pt;
pt.x = cvRound(trainData1.at(i,0));
pt.y = cvRound(trainData1.at(i,1));
cv::circle (img,pt,2,cv::Scalar(0,0,255),1,CV_FILLED);
pt.x = cvRound(trainData2.at(i,0));
pt.y = cvRound(trainData2.at(i,1));
cv::circle (img,pt,2,cv::Scalar(0,255,0),1,CV_FILLED);
}
cv::namedWindow( "classifier result", 1 );
cv::imshow( "classifier result", img );
cv::waitKey(0);
return 0;
}