一、EXPLAIN
做MySQL优化,我们要善用 EXPLAIN 查看SQL执行计划。
下面来个简单的示例,标注(1,2,3,4,5)我们要重点关注的数据
type列,连接类型。一个好的sql语句至少要达到range级别。杜绝出现all级别
key列,使用到的索引名。如果没有选择索引,值是NULL。可以采取强制索引方式
key_len列,索引长度
rows列,扫描行数。该值是个预估值
extra列,详细说明。注意常见的不太友好的值有:Using filesort, Using temporary
二、SQL语句中IN包含的值不应过多
MySQL对于IN做了相应的优化,即将IN中的常量全部存储在一个数组里面,而且这个数组是排好序的。但是如果数值较多,产生的消耗也是比较大的。再例如:select id from t where num in(1,2,3) 对于连续的数值,能用 between 就不要用 in 了;再或者使用连接来替换。
三、SELECT语句务必指明字段名称
SELECT *增加很多不必要的消耗(cpu、io、内存、网络带宽);增加了使用覆盖索引的可能性;当表结构发生改变时,前断也需要更新。所以要求直接在select后面接上字段名。
四、当只需要一条数据的时候,使用limit 1
这是为了使EXPLAIN中type列达到const类型
五、如果排序字段没有用到索引,就尽量少排序
六、如果限制条件中其他字段没有索引,尽量少用or
or两边的字段中,如果有一个不是索引字段,而其他条件也不是索引字段,会造成该查询不走索引的情况。很多时候使用 union all 或者是union(必要的时候)的方式来代替“or”会得到更好的效果
七、尽量用union all代替union
union和union all的差异主要是前者需要将结果集合并后再进行唯一性过滤操作,这就会涉及到排序,增加大量的CPU运算,加大资源消耗及延迟。当然,union all的前提条件是两个结果集没有重复数据。
八、不使用ORDER BY RAND()
select id from `dynamic` order by rand() limit 1000;
上面的sql语句,可优化为
select id from `dynamic` t1 join (select rand() * (select max(id) from `dynamic`) as nid) t2 on t1.id > t2.nidlimit 1000;
九、区分in和exists, not in和not exists
select * from 表A where id in (select id from 表B)
上面sql语句相当于
select * from 表A where exists(select * from 表B where 表B.id=表A.id)
区分in和exists主要是造成了驱动顺序的改变(这是性能变化的关键),如果是exists,那么以外层表为驱动表,先被访问,如果是IN,那么先执行子查询。所以IN适合于外表大而内表小的情况;EXISTS适合于外表小而内表大的情况。
关于not in和not exists,推荐使用not exists,不仅仅是效率问题,not in可能存在逻辑问题。如何高效的写出一个替代not exists的sql语句?
原sql语句
select colname … from A表 where a.id not in (select b.id from B表)
高效的sql语句
select colname … from A表 Left join B表 on where a.id = b.id where b.id is null
取出的结果集如下图表示,A表不在B表中的数据
十、使用合理的分页方式以提高分页的效率
select id,name from product limit 866613, 20
使用上述sql语句做分页的时候,可能有人会发现,随着表数据量的增加,直接使用limit分页查询会越来越慢。
优化的方法如下:可以取前一页的最大行数的id,然后根据这个最大的id来限制下一页的起点。比如此列中,上一页最大的id是866612。sql可以采用如下的写法:
select id,name from product where id> 866612 limit 20
十一、分段查询
在一些用户选择页面中,可能一些用户选择的时间范围过大,造成查询缓慢。主要的原因是扫描行数过多。这个时候可以通过程序,分段进行查询,循环遍历,将结果合并处理进行展示。
如下图这个sql语句,扫描的行数成百万级以上的时候就可以使用分段查询
十二、避免在 where 子句中对字段进行 null 值判断
对于null的判断会导致引擎放弃使用索引而进行全表扫描。
Java架构/分布式/高并发:468897908
十三、不建议使用%前缀模糊查询
例如LIKE “%name”或者LIKE “%name%”,这种查询会导致索引失效而进行全表扫描。但是可以使用LIKE “name%”。
那如何查询%name%?
如下图所示,虽然给secret字段添加了索引,但在explain结果果并没有使用
那么如何解决这个问题呢,答案:使用全文索引
在我们查询中经常会用到select id,fnum,fdst from dynamic_201606 where user_name like '%zhangsan%'; 。这样的语句,普通索引是无法满足查询需求的。庆幸的是在MySQL中,有全文索引来帮助我们。
创建全文索引的sql语法是:
ALTER TABLE `dynamic_201606` ADD FULLTEXT INDEX `idx_user_name` (`user_name`);
使用全文索引的sql语句是:
select id,fnum,fdst from dynamic_201606 where match(user_name) against('zhangsan' in boolean mode);
注意:在需要创建全文索引之前,请联系DBA确定能否创建。同时需要注意的是查询语句的写法与普通索引的区别
十四、避免在where子句中对字段进行表达式操作
比如
select user_id,user_project from user_base where age*2=36;
中对字段就行了算术运算,这会造成引擎放弃使用索引,建议改成
select user_id,user_project from user_base where age=36/2;
十五、避免隐式类型转换
where 子句中出现 column 字段的类型和传入的参数类型不一致的时候发生的类型转换,建议先确定where中的参数类型
十六、对于联合索引来说,要遵守最左前缀法则
举列来说索引含有字段id,name,school,可以直接用id字段,也可以id,name这样的顺序,但是name;school都无法使用这个索引。所以在创建联合索引的时候一定要注意索引字段顺序,常用的查询字段放在最前面
十七、必要时可以使用force index来强制查询走某个索引
有的时候MySQL优化器采取它认为合适的索引来检索sql语句,但是可能它所采用的索引并不是我们想要的。这时就可以采用forceindex来强制优化器使用我们制定的索引。
十八、注意范围查询语句
对于联合索引来说,如果存在范围查询,比如between,>,<等条件时,会造成后面的索引字段失效。
十九、关于JOIN优化
LEFT JOIN A表为驱动表
INNER JOIN MySQL会自动找出那个数据少的表作用驱动表
RIGHT JOIN B表为驱动表
注意:MySQL中没有full join,可以用以下方式来解决
select * from A left join B on B.name = A.namewhere B.name is nullunion allselect * from B;
尽量使用inner join,避免left join
参与联合查询的表至少为2张表,一般都存在大小之分。如果连接方式是inner join,在没有其他过滤条件的情况下MySQL会自动选择小表作为驱动表,但是left join在驱动表的选择上遵循的是左边驱动右边的原则,即left join左边的表名为驱动表。
合理利用索引
被驱动表的索引字段作为on的限制字段。
利用小表去驱动大表
从原理图能够直观的看出如果能够减少驱动表的话,减少嵌套循环中的循环次数,以减少 IO总量及CPU运算的次数。
巧用STRAIGHT_JOIN
inner join是由mysql选择驱动表,但是有些特殊情况需要选择另个表作为驱动表,比如有group by、order by等「Using filesort」、「Using temporary」时。STRAIGHT_JOIN来强制连接顺序,在STRAIGHT_JOIN左边的表名就是驱动表,右边则是被驱动表。在使用STRAIGHT_JOIN有个前提条件是该查询是内连接,也就是inner join。其他链接不推荐使用STRAIGHT_JOIN,否则可能造成查询结果不准确。
这个方式有时可能减少3倍的时间。
我们知道,不管是哪种数据库,或者是哪种数据库引擎,在对一条SQL语句进行执行的过程中都会做很多相关的优化,对于查询语句,最重要的优化方式就是使用索引。
而执行计划,就是显示数据库引擎对于SQL语句的执行的详细情况,其中包含了是否使用索引,使用什么索引,使用的索引的相关信息等。
(https://juejin.im/post/5a52386d51882573443c852a)
基本语法
explain select ...
mysql的explain 命令可以用来分析select 语句的运行效果。
除此之外,explain 的extended 扩展能够在原本explain的基础上额外的提供一些查询优化的信息,这些信息可以通过mysql的show warnings命令得到。
mysql> explain extended select * from account;
******** 1. row ***************************
id: 1
select_type: SIMPLE
table: account
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 1
filtered: 100.00
Extra:
1 row in set, 1 warning (0.00 sec)
mysql> show warnings;
*************1. row ***************************
Level: Note
Code: 1003
Message: select `dbunit`.`account`.`id` AS `id`,`dbunit`.`account`.`name` AS `name` from `dbunit`.`account`
1 row in set (0.00 sec)
另外,对于分区表的查询,需要使用partitions命令。
explain partitions select ...
不同版本的Mysql和不同的存储引擎执行计划不完全相同,但基本信息都差不多。mysql执行计划主要包含以下信息:
id
由一组数字组成。表示一个查询中各个子查询的执行顺序;
select_type
每个子查询的查询类型,一些常见的查询类型。
id | select_type | description |
---|---|---|
1 | SIMPLE | 不包含任何子查询或union等查询 |
2 | PRIMARY | 包含子查询最外层查询就显示为 PRIMARY |
3 | SUBQUERY | 在select 或 where 字句中包含的查询 |
4 | DERIVED | from 字句中包含的查询 |
5 | UNION | 出现在union 后的查询语句中 |
6 | UNION RESULT | 从UNION中获取结果集,例如上文的第三个例子 |
table
查询涉及到的数据表。
如果查询使用了别名,那么这里显示的是别名,如果不涉及对数据表的操作,那么这显示为null,如果显示为尖括号括起来的
partitions
表分区、表创建的时候可以指定通过那个列进行表分区。 举个例子:
create table tmp (
id int unsigned not null AUTO_INCREMENT,
name varchar(255),
PRIMARY KEY (id)
) engine = innodb
partition by key (id) partitions 5;
type
访问类型
ALL
扫描全表数据
index
遍历索引
range
索引范围查找
index_subquery
在子查询中使用 ref
unique_subquery
在子查询中使用 eq_ref
ref_or_null
对Null
进行索引的优化的 ref
fulltext
使用全文索引
ref
使用非唯一索引查找数据
eq_ref
在join
查询中使用PRIMARY KEY
orUNIQUE NOT NULL
索引关联。
const
使用主键或者唯一索引,且匹配的结果只有一条记录。
system const
连接类型的特例,查询的表为系统表。
性能从好到差依次为:
system,const,eq_ref,ref,fulltext,ref_or_null,unique_subquery,index_subquery,range,index_merge,index,ALL,除了ALL之外,其他的type都可以使用到索引,除了index_merge之外,其他的type只可以用到一个索引。
所以,如果通过执行计划发现某张表的查询语句的type显示为ALL,那就要考虑添加索引,或者更换查询方式,使用索引进行查询。
possible_keys
可能使用的索引,注意不一定会使用。查询涉及到的字段上若存在索引,则该索引将被列出来。当该列为 NULL
时就要考虑当前的SQL
是否需要优化了。
key
显示MySQL在查询中实际使用的索引,若没有使用索引,显示为NULL。
TIPS:
查询中若使用了覆盖索引(覆盖索引:索引的数据覆盖了需要查询的所有数据),则该索引仅出现在key列表中。
select_type为index_merge时,这里可能出现两个以上的索引,其他的select_type这里只会出现一个。
key_length
索引长度 char()、varchar()索引长度的计算公式:
(Character Set:utf8mb4=4,utf8=3,gbk=2,latin1=1) * 列长度 + 1(允许null) + 2(变长列)
其他类型索引长度的计算公式: ex:
CREATE TABLE `student` (
`id` int(11) unsigned NOT NULL AUTO_INCREMENT,
`name` varchar(128) NOT NULL DEFAULT '',
`age` int(11),
PRIMARY KEY (`id`),
UNIQUE KEY `idx` (`name`),
KEY `idx_age` (`age`)
) ENGINE=InnoDB AUTO_INCREMENT=2 DEFAULT CHARSET=utf8mb4;
name 索引长度为: 编码为utf8mb4,列长为128,不允许为NULL
,字段类型为varchar(128)
。key_length = 128 * 4 + 0 + 2 = 514;
age 索引长度:int类型占4位,允许null
,索引长度为5。
ref
表示上述表的连接匹配条件,即哪些列或常量被用于查找索引列上的值
如果是使用的常数等值查询,这里会显示const,如果是连接查询,被驱动表的执行计划这里会显示驱动表的关联字段,如果是条件使用了表达式或者函数,或者条件列发生了内部隐式转换,这里可能显示为func
rows
返回估算的结果集数目,注意这并不是一个准确值。
extra
extra
的信息非常丰富,常见的有:
Using index 使用覆盖索引
Using where 使用了用where子句来过滤结果集
Using filesort 使用文件排序,使用非索引列进行排序时出现,非常消耗性能,尽量优化。
Using temporary 使用了临时表。
一些SQL优化建议
1、SQL语句不要写的太复杂。
一个SQL语句要尽量简单,不要嵌套太多层。
2、使用『临时表』缓存中间结果。
简化SQL语句的重要方法就是采用临时表暂存中间结果,这样可以避免程序中多次扫描主表,也大大减少了阻塞,提高了并发性能。
3、使用like的时候要注意是否会导致全表扫
有的时候会需要进行一些模糊查询比如
select id from table where username like ‘%hollis%’
关键词%hollis%,由于hollis前面用到了“%”,因此该查询会使用全表扫描,除非必要,否则不要在关键词前加%,
4、尽量避免使用!=或<>操作符
在where语句中使用!=或<>,引擎将放弃使用索引而进行全表扫描。
5、尽量避免使用 or 来连接条件
在 where 子句中使用 or 来连接条件,引擎将放弃使用索引而进行全表扫描。
可以使用
select id from t where num=10
union all
select id from t where num=20
替代
select id from t where num=10 or num=20
6、尽量避免使用in和not in
在 where 子句中使用 in和not in,引擎将放弃使用索引而进行全表扫描。
可以使用
select id from t where num between 10 and 20
替代
select id from t where num in (10,20)
7、可以考虑强制查询使用索引
select * from table force index(PRI) limit 2;(强制使用主键)
select * from table force index(hollis_index) limit 2;(强制使用索引"hollis_index")
select * from table force index(PRI,hollis_index) limit 2;(强制使用索引"PRI和hollis_index")
8、尽量避免使用表达式、函数等操作作为查询条件
9、尽量避免大事务操作,提高系统并发能力。
10、尽量避免使用游标
11、任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。
12、尽可能的使用 varchar/nvarchar 代替 char/nchar
13、尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。
14、索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率
15、并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引