- 车载毫米波雷达行业发展5——企业
奔袭的算法工程师
行业资讯人工智能自动驾驶目标检测
5.1博世5.1.1公司简介博世集团创立于1886年,业务涵盖汽车与智能交通技术、工业技术、消费品、能源与建筑技术四大领域,是德国最大的工业企业之一、全球最大的汽车零部件供应商、最早研究车载毫米波雷达的企业之一。博世在高级辅助驾驶和自动驾驶上拥有业界最为领先和完整的产品线,也是智能驾驶行业发展的风向标。在中国市场,2022年,博世在前向雷达市场的份额为40.54%,占据着国内前雷达市场第一的位置。
- 【PaddleOCR】快速集成 PP-OCRv5 的 Python 实战秘籍--- PaddleOCR实例化 OCR 对象的参数介绍
云天徽上
PaddleOCRpythonocr开发语言人工智能文字识别
博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。CSDN人工智能领域的优质创作者,提供AI相关的技术咨询、项目开发和个性化解决方案等服务,如有需要请站内私信或者联系任意文章底部的的VX名片(ID:xf982831907)博主粉丝群介绍:①群内初中生、
- 最新人工智能硬件培训AI 基础入门学习课程参考2025版(大模型篇)
聆思科技AI芯片
聆思大模型开发板实践分享大模型语音交互人工智能语音识别视觉检测AI编程人机交互
前言在人工智能大模型重塑教育与社会发展的当下,无论是探索未来职业方向,还是更新技术储备,掌握大模型知识都已成为新时代的必修课。从职场上辅助工作的智能助手,到课堂用于学术研究的智能工具,大模型正在工作生活教育等领域发挥着越来越重要的作用。针对日前前来咨询的广大客户对面向大模型智能硬件的学习需求,我们根据CSK6大模型语音视觉开发板已有功能,整理了一份适合基于本开发板进行教学活动的学习课程参考给大家备
- 基于flask+vue框架的法律咨询公司管理信息系统的分析与设计[开题+论文+程序]-计算机毕设
zhihao508
flaskvue.js课程设计
本系统(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。系统程序文件列表开题报告内容研究背景随着社会的快速发展和法律意识的普遍增强,法律咨询服务需求日益增长,成为现代社会不可或缺的服务之一。传统法律咨询模式受限于时间、地域及信息不对称等问题,难以满足广大客户高效、便捷的服务需求。与此同时,法律咨询公司内部管理也面临挑战,如客户信息管理混乱、律师资源分配不
- 推荐开源项目:Jupyter 与 Nix 的完美结合
支然苹
推荐开源项目:Jupyter与Nix的完美结合jupyenvDeclarativeandreproducibleJupyterenvironments-poweredbyNix项目地址:https://gitcode.com/gh_mirrors/ju/jupyenv在数据科学与编程领域,JupyterNotebook已经成为不可或缺的工具,以其交互性和易于分享的特点深受开发者和研究人员的喜爱。然
- Emgu-WPF 激光雷达研究-绘制雷达图
DuelCode
WPFc#Emgu激光雷达雷达图
硬件:HokuyoURG04LX环境:VS2017-win10-64Emgu_3.2.0.2682语言:C#WPF数据解析参考:https://sourceforge.net/p/urgnetwork/wiki/Home/https://github.com/bqhdev/urg04lx_data_decoderhttp://sourceforge.net/projects/urgnetwork/
- 《5G网络切片诊断技术:性能指标关联分析与故障溯源》
团结湖到了
笔记
1.研究背景与问题5G网络通过网络切片技术实现多业务场景(如eMBB、uRLLC、mMTC)的隔离与定制化服务。但切片间资源抢占、跨层协议异常(如NR-RAN与核心网接口故障)等问题,常导致切片性能劣化(如时延突增、吞吐量骤降)。传统网络诊断方法难以适应切片的动态拓扑与多维度性能指标(如用户面时延、控制面信令成功率),亟需构建面向切片的智能诊断体系,解决“指标异常-故障根源”的关联分析与快速溯源问
- Mac电脑 医学绘图 Graphpad Prism
2501_92604878
macosmac医学绘图
GraphPadPrismMac是一款功能强大、易于使用的科学和统计分析工具,适用于各种类型的数据处理和可视化需求。无论您是进行基础研究、临床试验还是学术写作,GraphPadPrismMac都能为您短时间内做出最合适的分析选择,并优雅地绘制和展示您的作品。原文地址:GraphpadPrismMac医学绘图
- Python 3 中tkinter 里的滚动文本框(ScrolledText)
彭啊彭
最近在写一个模拟做题系统,里面有一个输出错题的功能,设置的文本框只有输出一道错题的大小,但是不能就一道题吧,就想到了平时页面里的滚动文本框,上网搜了搜,查到了ScrolledText,但是没找到实现我所需要功能的具体方法,没办法,我就自己研究了研究,好在最后实现了,现在就附上我的实现代码:defcuotiwin():globalscore#分数globallist2#存放错题var1=String
- 手把手教你入门vue+springboot开发(十三)--无感token前端实现
段鸿潭
java前端vue.jsspringboot
文章目录前言一、前端代码实现1.登录处理2.刷新token请求增加3.请求拦截器修改4.响应拦截器修改5.测试结果二、代码逻辑优化前言上一篇我们研究了无感token刷新的实现方案以及后端代码实现,本篇我们将详细研究一下前端代码实现,前端代码实现过程中也有很多细节的地方需要注意,重点要关注前端代码编码过程中的业务逻辑处理。一、前端代码实现1.登录处理Login.vue文件中://调用接口,完成登录l
- 火山引擎大模型未来发展趋势
苹果企业签名分发
智能体人工智能火山引擎
用户可能正在做技术选型或者行业研究,需要预测火山引擎在激烈竞争中的突围方向。从问题简洁性看,ta可能已经有一定基础认知,不需要我从零科普大模型概念。火山引擎作为字节跳动的技术输出平台,优势在于背靠抖音、今日头条等超级应用的海量数据和场景。但国内大模型赛道已经挤满百度文心、阿里通义等玩家,它必须找到差异化路径。我注意到几个关键点:技术层面,多模态和推理效率是火山近期的发力重点。他们6月刚发布的Sky
- 云计算在可视化非线性偏微分方程动力学中的应用:拟线性和半线性示例-AI云计算数值分析和代码验证
亚图跨际
AI云计算人工智能
“拟线性”和“半线性”代表了非线性偏微分方程(PDEs)这一大类中的重要分类。其区别主要在于非线性的表现形式,特别是与未知函数的最高阶导数之间的关系。在偏微分方程的研究中,将其分为线性、半线性、拟线性和完全非线性至关重要,因为用于分析和求解它们(例如,解的存在性、唯一性、正则性、数值方法)的数学技术根据其线性性质而显著不同。非线性偏微分方程通常比线性偏微分方程更难求解和分析,即使在非线性类别中,由
- D-FINE模型详解及代码复现
清风AI
目标跟踪人工智能计算机视觉深度学习机器学习python神经网络
研究背景在实时目标检测领域的快速发展背景下,D-FINE作为一项突破性的方法应运而生。它超越了现有模型如YOLOv10、YOLO11及RT-DETRv1/v2/v3,重新定义了边界框回归任务,显著提升了实时目标检测的性能上限。D-FINE通过创新的细粒度分布优化(FDR)和全局最优定位自蒸馏(GO-LSD)机制,为目标检测领域带来了新的突破,为未来的研究奠定了基础。创新优势D-FINE模型在创新方
- 黑客入门 | 用ROP和shellcode攻击SolarWinds Serv-U SSH漏洞
廖致君
安全网络攻击模型
(备注:黑客Hacker并不等同于信息安全罪犯。)最近花了些时间学习bufferoverflow安全漏洞,做了大名鼎鼎的CSAPP课程里的attacklab,学到了return-orientedprogramming(ROP)这种让我大开眼界的进攻方式。于是想要趁热打铁,来详细研究一下现实世界中的黑客进攻案例。本篇文章挑选的是2021年SolarWindsServ-UFTP软件中的漏洞,记录编号C
- 《高等数学》(同济大学·第7版)第十二章 无穷级数 第五节函数的幂级数展开式的应用
没有女朋友的程序员
高等数学
一、幂级数展开的核心作用幂级数展开不仅是理论工具,更是解决实际问题的计算利器,主要应用包括:近似计算:用多项式逼近复杂函数(如计算函数值、积分值)。求解微分方程:将解表示为幂级数形式,逐项代入方程求解。求和与积分:将难以处理的级数转化为已知函数的展开式。分析函数性质:通过展开式研究函数的极值、拐点等。二、典型应用详解近似计算函数值原理:用泰勒多项式的前几项近似代替原函数。关键步骤:写出函数的麦克劳
- g711a音频编码记录
写了个安卓wavpcmhttp直播流的程序。客户端采用sdl2直接播放pcm.工作的很好,但是,非常耗费带宽差不多100kb/s的网速。非常不利于外网的音频传输。尝试用zlib压缩,效果不尽理想。只压缩成90%。节约了1/10带宽遂放弃。尝试了安卓端mp3直播,效果不错,差不多带宽30kb/s。但是mp3有个很大的问题,就是延迟增大了几秒。研究了下wav压缩音频格式,发觉还有g711a,这个算法比
- 研究生养成计划5月1日
学习:《机器人操作系统》作者:刘相权,张万杰第一章,第二章笔记ROS虽然被称为操作系统,但是真正底层的任务调度,编译,寻址等任务还是由Linux操作系统完成——ROS是一个运行在Linux上的次级操作系统。双系统建议空间在100G以上,分区如下:如果有条件/:这个分区可以设置的大一些截图:shift+prtsc+Fn截取某个区域的图片内容/微信截图Alt+a命令行使用(1)调出终端程序,命令行上下
- 研究生第一次参加国际学术会议,啥也不懂怎么办?
诗远Yolanda
计算机视觉图像处理算法
第一次参加的同学也不需要太紧张,国际学术会议基本流程是三天,第一天签到,签到时间一般是从早到晚,所以不用担心自己去晚了会不会耽误赶不上。然后第二天早上8/9点开始,首先是主持人开场,有的就是会议大会主席充当主持人的角色,早上一般就是KeynoteSpeakers的报告,俗称大佬演讲,可以做做笔记啥的,中间会有一次茶歇,一般3-4个演讲之后就到中午那会了,就可以炫饭啦,一般是自助餐,可以吃饭期间认识
- JVM核心技术解析
MoneyHacksPro
Java场景面试宝典JavaJVMClassLoading
我是廖志伟,一名Java开发工程师、《Java项目实战——深入理解大型互联网企业通用技术》(基础篇)、(进阶篇)、(架构篇)清华大学出版社签约作家、Java领域优质创作者、CSDN博客专家、阿里云专家博主、51CTO专家博主、产品软文专业写手、技术文章评审老师、技术类问卷调查设计师、幕后大佬社区创始人、开源项目贡献者。拥有多年一线研发和团队管理经验,研究过主流框架的底层源码(Spring、Spri
- Vue - 监测数据的原理、Vue.set、vm.$set
企鹅d
vue.js前端javascript
监测数据的原理目录监测数据的原理一、更新时的问题二、Vue检测对象三、Vue检测数组3.1push添加3.2shift删除3.3splice替换3.4原理四、Vue.set4.1追加属性4.2案例五、总结5.1代码练习5.2总结一、更新时的问题为什么我们要研究一下Vue监测数据的原理?以防我们后续在给data赋值或者修改data中数据时导致修改不成功比如下面这个例子:初识vue人员列表<bu
- 从零开始:用Python构建AI语音识别应用的完整指南
AI大模型应用之禅
人工智能python语音识别ai
从零开始:用Python构建AI语音识别应用的完整指南关键词:Python语音识别、AI语音处理、语音转文本、SpeechRecognition库、端到端模型摘要:本文从0到1带您掌握用Python构建AI语音识别应用的全流程。我们将用“给小学生讲故事”的方式,拆解语音识别的核心概念(如音频采集、特征提取、模型解码),结合代码实战(从调用API到自定义模型),并覆盖环境搭建、常见问题和未来趋势。无
- 导师要求一天完成综述,我7分钟搞定——打造一个全本地DeepResearch助手
小洛~·~
人工智能深度学习chatgptgptAI写作
1.项目背景LocalDeepResearcher是一个本地化运行的AI研究助手,旨在通过结合大语言模型(LLM)和搜索工具,实现自动化深度研究并生成结构化报告。该项目由LangChainAI开发,支持本地模型(例如通过Ollama运行的deepseek-r1:7b)和云端模型(例如Claude、GPT),并集成了多种搜索引擎(如Tavily、DuckDuckGo)。其本地优先的设计确保了数据隐私
- CMSIS应用于研究指南图文教程
硬小二
《ST32从入门到就业》单片机stm32armKeil
欢迎点击浏览更多高清视频演示0,概述本文旨在帮助大家理解什么是CMSIS标准和CMSIS标准的基本内容,并为大家深入研究CMSIS提供途径。目录0,概述1,什么是CMSIS标准2,CMSIS文件获取方法3,总结1,什么是CMSIS标准CMSIS英文全程为:CortexMicrocontrollerSoftwareInterfaceStandard可翻译为“微控制器表层软件接口标准”。由于ARM是制
- 多模态大语言模型arxiv论文略读(144)
胖头鱼爱算法
#mllm_arxiv语言模型人工智能自然语言处理论文笔记论文阅读
LARP:TokenizingVideoswithaLearnedAutoregressiveGenerativePrior➡️论文标题:LARP:TokenizingVideoswithaLearnedAutoregressiveGenerativePrior➡️论文作者:HanyuWang,SakshamSuri,YixuanRen,HaoChen,AbhinavShrivastava➡️研究
- 关于“重现bug—探查bug—解决bug“的一本书
人邮异步社区
bug软件开发程序员
《EffectiveDebugging:调试软件和系统的66个有效方法》是一本关于软件和系统调试的实用指南。作者迪欧米迪斯.斯宾奈里斯(DiomidisSpinellis)是希腊雅典经济与商业大学管理科学与技术系教授。他的研究涵盖软件工程、IT安全和云系统工程。他撰写了两本屡获殊荣的技术图书,《代码阅读方法与实践》(CodeReading:TheOpenSourcePerspective)和《高质
- 《Python 实现 B 站视频信息爬虫:从批量获取到 CSV 保存》
维他奶糖61
python音视频爬虫
B站视频信息爬虫实战:用Python批量获取B站视频数据引言在数据分析和内容研究场景中,获取B站视频的标题、播放量、作者等信息是常见需求。本文将介绍如何使用Python编写一个B站视频爬虫,通过DrissionPage库实现自动化数据采集,并保存为CSV格式。相比传统Selenium,DrissionPage的API更简洁,适合快速开发爬虫脚本。技术栈与环境准备核心库:DrissionPage:基
- 普通话的调域中值
音元系统
语音识别自然语言处理语言模型python
普通话调域中值测算为五度标调法的3.81及其取整为4的准确性与合理性研究摘要本研究通过对比分析不同计算方法得出的普通话调域中值,探讨了将调域中值测算为3.81并取整为4的准确性与合理性。研究比较了本中值算法与刘俐李(2004)算法的差异,结合石锋(1986)等实证研究数据,验证了3.81作为调域中值的科学性。结果表明,该取值不仅符合普通话声调的实际分布特征,也为五度标调法的应用提供了更精确的参考标
- 大学专业科普 | 图像处理、智能控制与计算机工程
鸭鸭鸭进京赶烤
计算机工程
计算机工程专业介绍计算机工程专业是一个非常热门且具有广泛发展前景的领域,它涵盖了计算机硬件、软件以及它们之间的交互等多个方面。以下是对计算机工程专业的详细介绍:专业定义计算机工程专业主要是研究计算机系统的设计、开发、测试和维护。它融合了计算机科学和电子工程的知识,侧重于计算机硬件和软件的协同工作,以及计算机系统在各个领域的应用。课程设置基础课程数学课程物理课程计算机基础课程专业核心课程硬件方向课程
- 无铅压电陶瓷研究进展:技术突破与产业升级路径
莱歌数字
数字化转型#职场经验#结构热设计科技热设计CAE散热能源
作者简介:科技自媒体优质创作者个人主页:莱歌数字-CSDN博客公众号:莱歌数字个人微信:yanshanYH211、985硕士,职场15年+从事结构设计、热设计、售前、产品设计、项目管理等工作,涉足消费电子、新能源、医疗设备、制药信息化、核工业等领域涵盖新能源车载与非车载系统、医疗设备软硬件、智能工厂等业务,带领团队进行多个0-1的产品开发,并推广到多个企业客户现场落地实施。专题课程Flotherm
- 领域驱动设计核心解析
我是廖志伟,一名Java开发工程师、《Java项目实战——深入理解大型互联网企业通用技术》(基础篇)、(进阶篇)、(架构篇)清华大学出版社签约作家、Java领域优质创作者、CSDN博客专家、阿里云专家博主、51CTO专家博主、产品软文专业写手、技术文章评审老师、技术类问卷调查设计师、幕后大佬社区创始人、开源项目贡献者。拥有多年一线研发和团队管理经验,研究过主流框架的底层源码(Spring、Spri
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f