- Pycharm配置conda虚拟环境出现unsupported
徐徐祥来-小黑皮
pycharmcondaide
1.最近小黑皮在学习Mask-Rcnn框架,初步计划是先跑通一遍,再去深入学习。起初我的anaconda里已经有一个支持做图像处理的虚拟环境了。2.tensorflow-gpu就是之前配置好的环境。3.但是在跑的过程中,出现了tensorflow和keras版本冲突的问题,我又不想降级。本身里面的包就比较多。4.所以我索性创建一个新的虚拟环境,即mask-rcnn。5.在pycharm中配置con
- YOLO系列
Array902
YOLOpython深度学习
深度学习经典检测方法two-stage(两阶段):Faster-rcnn\Mask-Rcnn系列(两阶段即多了一步预选操作)one-stage(单阶段):YOLO系列(直接处理,不需要对数据进行预选)one-stage:最核心的优势:速度非常快,适合做实时监测任务!但是缺点也是有的,效果通常情况下不会太好!(速度越快效果越差,二者相互有些矛盾)mAP:效果好坏FPS:速度快慢two-stage:速
- 中文文档版面分析
鱼遇雨愈愉
ocr
PDF中文论文版面分析,目前看来训练结果较好,推理结果如下图所示。模型使用Mask-RCNN,数据集使用公开数据。
- labelme 标注的数据集转化为Mask-Rcnn适用的数据集
小龙Guo
python开发语言数据集
labelme标注的数据集转化为Mask-Rcnn适用的数据集食用步骤1.labelme标注数据时,将生成的json文件和原图保存在一起2.只需提供labelme生成的数据的文件夹,和maskrcnn的数据集文件夹,运行代码就会自动进行处理3.代码会在提供的maskrcnn数据集文件夹下生成’cv2_mask’,‘json’,‘label’,‘pic’,‘yaml’,'pic_and_mask’这
- Mask-RCNN网络——实例分割
shuyeah
深度学习计算机视觉卷积神经网络
Mask-RCNN网络——实例分割实例分割任务可以看做分为两部分:目标检测和语义分割1、Mask-RCNN的网络结构框架2、Mask-RCNN网络的的具体步骤2.1主干特征提取网络ResNet101这里默认输入图片大小为1024*1024图片来自https://blog.csdn.net/weixin_44791964/article/details/104629135残差网络的残差块分为两类:I
- YOLO系列/20230903
lucharaar
YOLO
深度学习经典检测方法1.two-stage(分两阶段):Faster-Rcnn和Mask-Rcnn系列-------检测过程中加了预选框步骤速度通常较慢(5FPS),但是效果通常不错非常实用的通用框架Mask-Rcnn,需要了解2.one-stage(单阶段):YOLO系列------当我们想做检测任务,一个cnn网络直接做一个回归任务就可以,中间不需要加额外的补充最核心的优势:速度非常快,适合做
- mask-rcnn原理与实战
nice-wyh
pytorch目标检测人工智能
一、MaskR-CNN是什么,可以做哪些任务?MaskR-CNN是一个实例分割(Instancesegmentation)算法,可以用来做“目标检测”、“目标实例分割”、“目标关键点检测”。1.实例分割(Instancesegmentation)和语义分割(Semanticsegmentation)的区别与联系联系:语义分割和实例分割都是目标分割中的两个小的领域,都是用来对输入的图片做分割处理;区
- MASK-RCNN 三种基础结构
樨潮
目标检测
MaskXRCnn俨然成为一个现阶段最成功的图像检测分割网络,关于MaskXRCnn的介绍,需要从MaskRCNN看起。当然一个煽情的介绍可见:何恺明团队推出Mask^XR-CNN,将实例分割扩展到3000类。MaskRCnn取得的精细结果有三个主要技术构架:DeepMask、SharpMask、MultiPathNet。MaskRCNN与普通FNN的典型不同之处,重要两点为添加了SharpMas
- mmdetection安装与训练
不减到100斤不吃锅包肉
深度学习pytorch深度学习
一、什么是mmdetection商汤科技(2018COCO目标检测挑战赛冠军)和香港中文大学最近开源了一个基于Pytorch实现的深度学习目标检测工具箱mmdetection,支持Faster-RCNN,Mask-RCNN,Fast-RCNN等主流的目标检测框架,后续会加入Cascade-RCNN以及其他一系列目标检测框架。二、mmdetection安装本人安装环境:系统环境:Ubuntu20.0
- Faster-RCNN and Mask-RCNN框架解析
nice-wyh
pytorch目标检测深度学习机器学习
由于本人记忆力实在太差,每次学完一个框架没过多久就会忘,而且码文能力不行,人又懒,所以看到了其他人写的不错的两篇框架解析的博文,先来记录一下,就当是我写的喽Faster-rcnn详解_fasterr-cnn-CSDN博客MaskR-CNN详解_maskrcnn-CSDN博客
- 4、目标检测
爱补鱼的猫猫
深度学习笔记目标检测计算机视觉深度学习
目标检测一、分类和发展史二、Anchor锚三、anchor-based1、one-stage2、two-stage四、anchor-free五、YOLO系列六、R-CNN系列**1、R-CNN**2、Spp-Net3、Fast-RCNN4、Faster-RCNN5、Mask-RCNN一、分类和发展史计算机视觉的任务很多,有图像分类、目标检测、图像分割(语义分割、实例分割和全景分割等)、图像生成。目
- labelme 语义分割数据集_图像语义分割标注工具labelme制作自己的数据集用于mask-rcnn训练...
weixin_39556064
labelme语义分割数据集
labelme(标注mask数据集用的)windowspython2pipinstallpyqtpipinstalllabelmepython3pipinstallpyqt5pipinstalllabelmeubuntu16.04系统自带的python2.7环境sudoapt-getinstallpython-qt4pyqt4-dev-toolssudopipinstalllabelme#pyth
- labelme maskrcnn 批量_用自己的数据集训练Mask-RCNN实现过程中的坑
出迷佬
labelmemaskrcnn批量
原标题:用自己的数据集训练Mask-RCNN实现过程中的坑图片源自:unsplash作者蹦跶的小羊羔如需转载,请联系原作者授权。本文仅仅是自己实现过程的笔记记录,仅仅用来交流的。在网上大量搜集资料后,实现Mask-RCNN,但是过程中还是出现了很多很多的问题,所以将过程记录如下,方便日后学习。一、实验前准备1.COCO数据集COCO的全称是CommonObjectsinCOntext,是微软团队提
- 使用Mask-RCNN训练自己的数据集看这一篇就够了,从制作数据集开始一步步教你如何玩转Mask-RCNN(保姆级教程)
ekekkk
深度学习人工智能目标检测
一、安装labelme深度学习算法等基于神经网络的算法都是基于数据驱动的,数据的好坏会影响你最后生成的模型的好坏,在使用Mask-RCNN时,第一件事就是标注数据集,这里我们默认你已经配置好了anaconda的环境,如果你没有配置好可以参考一下其他人的博客,在已经配置好的conda环境下新建一个虚拟环境,在终端中输入以下命令安装标注工具labelme:pipinstalllabelmepipins
- MASK-RCNN tensorflow环境搭建
小龙Guo
深度学习tensorflowpythoncnn
此教程默认你已经安装了Anaconda,且tensorflow为cpu版本。为什么不用gpu版本,原因下面解释。此教程默认你已经安装了Anaconda。因为tensorflow2.1后的gpu版·,不支持windows。并且·只有高版本的tensorflow才对应我的CUDA12.2;而且,我之前安装了pytorch跑tolov8,cuda都很高。安装tensorflow-gpu的话,需要重新安装
- 【论文阅读】【yolo系列】YOLACT Real-time Instance Segmentation
magic_ll
yolo系列深度学习相关的论文阅读论文阅读YOLO
论文链接:https://arxiv.org/pdf/1904.02689.pdf1实例分割已有工作【实例分割】鉴于其重要性,大量的研究投入到实例分割的准确性。两阶段:Mask-RCNN[18]是一种具有代表性的两阶段实例分割方法,它首先生成候选感兴趣区域(roi),然后在第二阶段对这些roi进行分类和分割。后续工作试图通过提高其准确性,例如,丰富FPN特性[29]或解决掩码的置信度分数与其定位精
- mask-R-CNN
Tian-Feng
深度学习YOLOr语言cnn开发语言
前言代码论文#Mask-rcnn算法在torchvision中有直接实现,可以直接引用使用在自己的工作中。importtorchvisionmodel=torchvision.models.detection.maskrcnn_resnet50_fpn(weights=MaskRCNN_ResNet50_FPN_Weights.DEFAULT)MaskR-CNN(MaskRegion-basedC
- 基于PyTorch搭建Mask-RCNN实现实例分割
积雨辋川
计算机视觉深度学习pytorch图像处理计算机视觉
基于PyTorch搭建Mask-RCNN实现实例分割在这篇文章中,我们将讨论MaskRCNNPytorch背后的理论以及如何在PyTorch中使用预训练的MaskR-CNN模型。1.语义分割、目标检测和实例分割在之前的博客文章里介绍了语义分割和目标检测(如果感兴趣可以参考以下文章):图像语义分割概述Pytorch实现图像语义分割(初体验)基于PyTorch搭建FasterRCNN实现目标检测语义分
- 【OCR】文本检测方案 TextFuseNet解读
门被核桃夹了还能补脑嘛
Harvester深度学习计算机视觉目标检测ocr
TextFuseNet:SceneTextDetectionwithRicherFusedFeaturesPDFLinkGithubCode一些总结,非作者文章内容:实质上是去通过文本检测中多级别的目标融合的方法来提升检测效果的,核心价值其实分两点来看提出了一种利用Mask-RCNN的流程以及多分枝的结构实现多层特征融合方案,从全局特征->词特征+字符特征来提升文字检测效果。性能优势非常非常明显,
- pytorch 训练过程内存泄露/显存泄露debug记录:dataloader和dataset导致的泄露
Cleo_Gao
debugpytorch人工智能python
背景微调mask-rcnn代码,用的是torchvision.models.detection.maskrcnn_resnet50_fpn代码,根据该代码的注释,输入应该是:images,targets=None(List[Tensor],Optional[List[Dict[str,Tensor]]])->Tuple[Dict[str,Tensor],List[Dict[str,Tensor]]
- 语义分割—1 Mask RCNN
山居秋暝LS
计算机视觉
MaskRCNN1Mask-RCNN网络结构1.1Backbone:Resnet1011.2RPNblock1.3RoiAlign+(Reg,Cls)block+Mask2损失Mask-RCNN:Backbone+RPNblock+(Reg,Cls)block+Maskblock(1)Backbone用Resnet101提取下采样2次、3次、4次、5次的特称层构造特征金字塔。(2)RPNblock
- 检测论文综述(一) : 从RCNN到Mask-RCNN
Junr_0926
对于目标检测方向并不是特别熟悉,本文记录一下RCNN,fast-RCNN,faster-RCNN,mask-RCNN这4篇有关目标检测的论文笔记和学习心得。RCNN-RichfeaturehierarchiesforaccurateobjectdetectionandsemanticsegmentationR-CNN的意思就是Regionbased,主要思路就是根据一张图像,提取多个region,
- 训练自己的数据集时,重复训练同一张照片,怎么解决?
Xin.643
人工智能tensorflowpython
我在用Mask-RCNN训练自己的数据集,利用的autodl上的远程服务器,系统是ubuntu18.04,下面是我运行的结果,有没有人知道是什么原因呢,求帮助,谢谢大家(用的tensorflow框架)
- [Win11]Mask-RCNN 环境配置
Xin.643
pythontensorflow深度学习
[Win11]Mask-RCNN环境配置1.安装tensorflow//conda指令安装condainstalltensorflow-gpu=2.6//验证安装成功pyhon//进入python环境importtensorflowastfprint(tf.__version__)//输出版本号tf.test.is_gpu_available()//输出“True”即为安装成功2.安装必要依赖包t
- yolo系列学习
邦之彦
YOLO
文章目录理论基础YOLO-V1YOLO-V2教学视频理论基础不同阶段算法优缺点分析two-stage(两阶段):Faster-rcnn、Mask-Rcnn,多了预选框操作RPNOne-stage(单阶段):YOLO指标分析精度Precision查准率,预测为正且实际为正占预测为正的比例召回率Recall查全率,预测为正且实际为正占总体正样本的比例准确度Accuracy,预测为正且实际为正和预测为负
- YOLO算法入门知识概念
红狐狸的北北记
机器学习与深度学习YOLO算法python深度学习
1.two-stage&&one-stagetwo-stage(两阶段):Faster-rcnn,Mask-Rcnn系列(5EPS)---多了预选环节one-stage(单阶段):YOLO系列(速度快)---实时检测时常用2.Map指标:综合衡量控制效果包含了精度和recall(召回率)两个部分3.IOU(交集与并集的比值)IOU=AreaofOverlap/AreaofUnion(交集/并集)这
- 舌诊图像分析答辩总结
贝斯塔
python深度学习目标检测
今天答辩结束了,准备了这么久,总体表现还可以。还是有一部分表述不是太准确,有些部分没展现出来。我们都是站在前人的肩膀上眺望远方,尽力、有收获就可以了。从最初的参考各个文献想使用Mask-RCNN同时对图像中物体进行检测和分割,由于电脑配置不行,放弃了这条,到最后有了清晰思路,决定选用相对较新的ResNeXt,Yolov5,其实最初也是对前人思路的模仿。对食管癌、非食管癌的分类,最初设想是保留患者就
- 出现错误(已解决)安装skimage包时报错解决方法
Bonefire20
python开发语言
错误:(mask-rcnn)ltsyl308@ltsyl308:~/modification/Mask_RCNN-2.1$pipinstallskimageCollectingskimageUsingcachedskimage-0.0.tar.gz(757bytes)Preparingmetadata(setup.py)...errorerror:subprocess-exited-with-er
- 批量从多个文件夹中提取图片的小脚本
冰虺
深度学习计算机视觉pytorch
importosimportshutilpath='F://maskrcnntang//MASK-RCNN//maskrcnn_test//mydata//labelme_json//'#_json文件夹所在的路径new_path='F:\\maskrcnntang\\MASK-RCNN\\maskrcnn_test\\mydata\\cv2_mask'#需保存的路径count=os.listdi
- On Pre-Trained Image Features and Synthetic Images for Deep Learning总结
中了胖毒
文章链接摘要深度学习为了获得较好效果需要大量的训练数据,并且需要对这些数据进行人工标注。收集标注数据的过程费时费力,因此,使用合成图片训练网络越发吸引关注。本文提出了一个使用合成数据训练目标检测网络的简单有效的方法:在真实图片上预训练好的通用网络,固定其前几层,然后使用OpenGL渲染合成的图片训练优化后续层的参数。文章在几个经典的网络(Faster-RCNN,Mask-RCNN,Inceptio
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分