[ACM_模拟] POJ1068 Parencodings (两种括号编码转化 规律 模拟)

Description

Let S = s1 s2...s2n be a well-formed string of parentheses. S can be encoded in two different ways: 
q By an integer sequence P = p1 p2...pn where pi is the number of left parentheses before the ith right parenthesis in S (P-sequence). 
q By an integer sequence W = w1 w2...wn where for each right parenthesis, say a in S, we associate an integer which is the number of right parentheses counting from the matched left parenthesis of a up to a. (W-sequence). 

Following is an example of the above encodings: 

S (((()()())))
P-sequence 4 5 6666
W-sequence 1 1 1456

Write a program to convert P-sequence of a well-formed string to the W-sequence of the same string. 

Input

The first line of the input contains a single integer t (1 <= t <= 10), the number of test cases, followed by the input data for each test case. The first line of each test case is an integer n (1 <= n <= 20), and the second line is the P-sequence of a well-formed string. It contains n positive integers, separated with blanks, representing the P-sequence.

Output

The output file consists of exactly t lines corresponding to test cases. For each test case, the output line should contain n integers describing the W-sequence of the string corresponding to its given P-sequence.

Sample Input

2

6

4 5 6 6 6 6

9 

4 6 6 6 6 8 9 9 9

Sample Output

1 1 1 4 5 6

1 1 2 4 5 1 1 3 9

Source

 

题目大意:一组标准的括号(就是每一个左括号的都有且仅有一个右边的对应,符合常理),其编码方式有两种:

                  P:p[i]表示第i个右括号左边有的左括号数量

                  W:w[i]表示从与第i个右括号对应的左括号开始至第i个右括号共有右括号的数量

              现在给出P串输出W串

解题思路:用b[]统计第i个右括号和第i-1个右括号之间有多少个左括号,然后模拟流程(对于每个右括号向前找

最近左括号,然后在找到的左括号对应区间的b[]减1,依次寻找....

 1 #include<iostream>

 2 #include<cmath>

 3 #include<algorithm>

 4 using namespace std;

 5 int main(){

 6     int n,a[25],b[25]; 

 7     int t;cin>>t;

 8     while(t--){

 9         cin>>n;              //输入

10         for(int i=0;i<n;i++)

11             cin>>a[i];

12         b[0]=a[0];           //求b[]

13         for(int i=1;i<n;i++)

14             b[i]=a[i]-a[i-1];

15         cout<<1;             //求解并输出

16         for(int i=1;i<n;i++){

17             for(int j=i;j>=0;j--){

18                 if(b[j]!=0){

19                     cout<<' '<<i-j+1;

20                     b[j]--;

21                     break;

22                 }

23             }

24         }cout<<'\n';

25     }return 0;

26 }

 

 

你可能感兴趣的:(encoding)