图像分类数据集 (FASHION-MNIST)

文章目录

  • 引入
  • 1 获取数据集
  • 2 简单操作
  • 3 读取小批量
  • 4 完整代码
  • 致谢

引入

  图像分类数据集最常用的是手写数字识别数据集MNIST (1),但是大部分模型在其上的分类精度都超过了95%。为了更直观地观察算法之间的差异,将使用一个图像内容更加复杂的数据集[Fashion-MNIST (2)]。
  接下来的部分将使用torchvision包,主要用于构建计算机视觉模型,主要由以下4部分组成:

组成 功能
torchvision.datasets 加载数据的函数及常用的数据集接口
torchvision.models 包含常用的模型结构 (含预训练模型)
torchvision.transforms 常用的图片变化,例如裁剪、旋转
torchvision…utils 其他方法

  代码已上传至github:
  https://github.com/InkiInki/Python/blob/master/Python1/deepLearning/ImageMnist.py

1 获取数据集

  需要导入的包如下:

import torch
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import time
import sys
from IPython import display

  下面,将通过torchvision.datasets下载数据集,第一次调用时会自动从网上获取数据 (若出现速度较慢,请向后查看注意);通过参数train来指定获取训练集或者测试集;通过transform = transforms.Tensor()将数据转化为Tensor,如果不转换,则返回PIL图片。
  transforms.Tensor()将尺寸为 ( H × W × C H×W×C H×W×C)且数据位于 (0, 255)的PIL图片或数据类型为np.uint8的Numpy转换为尺寸为 ( C × H × W C×H×W C×H×W)且数据类型为torch.float32且位于 (0.0, 1.0)的Tensor。

  使用代码如下:

class ImageMnist():
    
    def __init__(self):
        self.mnist_train = torchvision.datasets.FashionMNIST(root='~/DataSets/FashionMNIST',
            train=True, download=True, transform=transforms.ToTensor())
        self.mnist_test = torchvision.datasets.FashionMNIST(root='~/DataSets/FashionMNIST',
            train=False, download=True, transform=transforms.ToTensor())

if __name__ == "__main__":
    test = ImageDataSet()
    test.__init__()
    print(test.mnist_train)
    print(len(test.mnist_train), len(test.mnist_test))

  运行结果:

Dataset FashionMNIST
    Number of datapoints: 60000
    Root location: C:\Users\Administrator/DataSets/FashionMNIST
    Split: Train
    StandardTransform
Transform: ToTensor()
60000 10000

  注意:
  1)如果用像素值表示图片数据,那么一律将其类型设置成unit8,以避免不必要的bug;
  2)第一次下载时速度也许很慢,推荐在cmd中输入以下代码,并复制出现的http链接下载:

import torchvision
import torchvision.transforms as transforms
torchvision.datasets.FashionMNIST(root='~/DataSets/FashionMNIST', train=True, download=True, transform=transforms.ToTensor())
torchvision.datasets.FashionMNIST(root='~/DataSets/FashionMNIST', train=False, download=True, transform=transforms.ToTensor())

2 简单操作

  可以通过下标来访问任意一个样本:

if __name__ == "__main__":
    test = ImageMnist()
    test.__init__()
    data, label = test.mnist_train[0]
    print(data.shape)
    print(label)

  运行结果:

torch.Size([1, 28, 28])    # 分别对应通道数、图像高、图像宽
9

  Fashion-MNIST共10个类别,分别为t-shirt、trouser、pullover、dress、coat、sandal、shirt、sneaker、bag和ankle boot,以下函数可以将数值标签转换成相应的文本标签:

	...
    def get_text_labels(self, labels):
        text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat', 'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
        return [text_labels[int(i)] for i in labels]
        
if __name__ == "__main__":
    test = ImageMnist()
    test.__init__()
    data, label = test.mnist_train[0]
    print(test.get_text_labels([label]))

  运行结果:

['ankle boot']

  现在定义一个可以在一行里画出多张图像和对应标签的函数:

	...
    def show_mnist(self, images, labels):
        display.set_matplotlib_formats('svg')
        _, figs = plt.subplots(1, len(images), figsize=(12, 12))
        # zip()接受一系列可迭代对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表
        for f, img, lbl in zip(figs, images, labels):
            f.imshow(img.view((28, 28)).numpy())
            f.set_title(lbl)
            f.axis('off')
        plt.show()
        
if __name__ == "__main__":
    test = ImageMnist()
    test.__init__()
    x, y = [], []
    for i in range(10):
        x.append(test.mnist_train[i][0])
        y.append(test.mnist_train[i][1])
    test.show_mnist(x, test.get_text_labels(y))

  运行结果:
在这里插入图片描述

3 读取小批量

  torch的DataLoader中一个很方便的功能是运行使用多进程来加速读取数据,这里通过参数num_workers来设置4个进程读取数据。

	...
    def data_iter(self, batch_size=256):
        if sys.platform.startswith('win'):
            num_workers = 0    # 0表示不需要额外的进程来加速读取数据
        else:
            num_workers = 4
        train_iter = torch.utils.data.DataLoader(self.mnist_train, 
            batch_size=batch_size, shuffle=True, num_workers=num_workers)
        test_iter = torch.utils.data.DataLoader(self.mnist_test, 
            batch_size=batch_size, shuffle=False, num_workers=num_workers)
        return train_iter, test_iter
        
if __name__ == "__main__":
    start = time.time()
    test = ImageMnist()
    test.__init__()
    train_iter, test_iter = test.data_iter()
    for x, y in train_iter:
        continue
    print("%.2f sec" % (time.time() - start))

  运行结果:

6.65 sec

4 完整代码

'''
@(#)test.py
The class of test.
Author: Yu-Xuan Zhang
Email: [email protected]
Created on May 05, 2020
Last Modified on May 05, 2020

@author: inki
'''
import torch
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import time
import sys
from IPython import display

class ImageMnist():
    
    def __init__(self):
        self.mnist_train = torchvision.datasets.FashionMNIST(root='~/DataSets/FashionMNIST',
            train=True, download=True, transform=transforms.ToTensor())
        self.mnist_test = torchvision.datasets.FashionMNIST(root='~/DataSets/FashionMNIST',
            train=False, download=True, transform=transforms.ToTensor())
        
    def get_text_labels(self, labels):
        text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat', 'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
        return [text_labels[int(i)] for i in labels]
    
    def show_mnist(self, images, labels):
        display.set_matplotlib_formats('svg')
        _, figs = plt.subplots(1, len(images), figsize=(12, 12))
        for f, img, lbl in zip(figs, images, labels):
            f.imshow(img.view((28, 28)).numpy())
            f.set_title(lbl)
            f.axis('off')
        plt.show()
        
    def data_iter(self, batch_size=256):
        if sys.platform.startswith('win'):
            num_workers = 0
        else:
            num_workers = 4
        train_iter = torch.utils.data.DataLoader(self.mnist_train, 
            batch_size=batch_size, shuffle=True, num_workers=num_workers)
        test_iter = torch.utils.data.DataLoader(self.mnist_test, 
            batch_size=batch_size, shuffle=False, num_workers=num_workers)
        return train_iter, test_iter
        
if __name__ == "__main__":
    start = time.time()
    test = ImageMnist()
    test.__init__()
    train_iter, test_iter = test.data_iter()
    for x, y in train_iter:
        continue
    print("%.2f sec" % (time.time() - start))

致谢

  特别感谢李沐、Aston Zhang等老师的这本《动手学深度学习》一书~

你可能感兴趣的:(数据集介绍)