http://blog.csdn.net/mylove0414/article/details/56969181
http://blog.csdn.net/mylove0414/article/details/55805974
感谢原博主Scorpio_Lu!!!
在进行学习的时候,发现由于Tensorflow版本问题或程序bug,导致无法运行,故在原博主的基础上做了调整,以下均是干货。
环境信息:
操作系统:Win7
Anaconda版本: 4.2.9
Tensorflow版本:1.1.0
数据集:dataset_1.csv 和 dataset_2.csv,我不会发CSDN附件,如有需要的同学,可留下自己的邮箱,我会定期发送。
一、一维数据预测(stock_predict_1.py):
#coding=utf-8
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.contrib import rnn
f=open('dataset_1.csv')
df=pd.read_csv(f)
data=np.array(df['max'])
data=data[::-1]
#plt.figure()
#plt.plot(data)
#plt.show()
normalize_data=(data-np.mean(data))/np.std(data)
normalize_data=normalize_data[:,np.newaxis]
time_step=20
rnn_unit=10
batch_size=60
input_size=1
output_size=1
lr=0.0006
train_x,train_y=[],[]
for i in range(len(normalize_data)-time_step-1):
x=normalize_data[i:i+time_step]
y=normalize_data[i+1:i+time_step+1]
train_x.append(x.tolist())
train_y.append(y.tolist())
X=tf.placeholder(tf.float32, [None,time_step,input_size])
Y=tf.placeholder(tf.float32, [None,time_step,output_size])
weights={
'in':tf.Variable(tf.random_normal([input_size,rnn_unit])),
'out':tf.Variable(tf.random_normal([rnn_unit,1]))
}
biases={
'in':tf.Variable(tf.constant(0.1,shape=[rnn_unit,])),
'out':tf.Variable(tf.constant(0.1,shape=[1,]))
}
def lstm(batch):
w_in=weights['in']
b_in=biases['in']
input=tf.reshape(X,[-1,input_size])
input_rnn=tf.matmul(input,w_in)+b_in
input_rnn=tf.reshape(input_rnn,[-1,time_step,rnn_unit])
#cell=tf.nn.rnn_cell.BasicLSTMCell(rnn_unit)
cell=rnn.BasicLSTMCell(rnn_unit, reuse=tf.get_variable_scope().reuse)
init_state=cell.zero_state(batch,dtype=tf.float32)
output_rnn,final_states=tf.nn.dynamic_rnn(cell, input_rnn,initial_state=init_state, dtype=tf.float32)
output=tf.reshape(output_rnn,[-1,rnn_unit])
w_out=weights['out']
b_out=biases['out']
pred=tf.matmul(output,w_out)+b_out
return pred,final_states
def prediction():
with tf.variable_scope("sec_lstm", reuse=True):
pred,_=lstm(1)
saver=tf.train.Saver(tf.global_variables())
with tf.Session() as sess:
saver.restore(sess, 'model_save1\\modle.ckpt')
#I run the code in windows 10,so use 'model_save1\\modle.ckpt'
#if you run it in Linux,please use 'model_save1/modle.ckpt'
prev_seq=train_x[-1]
predict=[]
for i in range(100):
next_seq=sess.run(pred,feed_dict={X:[prev_seq]})
predict.append(next_seq[-1])
prev_seq=np.vstack((prev_seq[1:],next_seq[-1]))
plt.figure()
plt.plot(list(range(len(normalize_data))), normalize_data, color='b')
plt.plot(list(range(len(normalize_data), len(normalize_data) + len(predict))), predict, color='r')
plt.show()
prediction()
二、多维数据预测(stock_predict_2.py)
#coding=utf-8
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.contrib import rnn
rnn_unit=10 #隐层数量
input_size=7
output_size=1
lr=0.0006 #学习率
#——————————————————导入数据——————————————————————
f=open('dataset_2.csv')
df=pd.read_csv(f) #读入股票数据
data=df.iloc[:,2:10].values #取第3-10列
#获取训练集
def get_train_data(batch_size=60,time_step=20,train_begin=0,train_end=5800):
batch_index=[]
data_train=data[train_begin:train_end]
normalized_train_data=(data_train-np.mean(data_train,axis=0))/np.std(data_train,axis=0) #标准化
train_x,train_y=[],[] #训练集
for i in range(len(normalized_train_data)-time_step):
if i % batch_size==0:
batch_index.append(i)
x=normalized_train_data[i:i+time_step,:7]
y=normalized_train_data[i:i+time_step,7,np.newaxis]
train_x.append(x.tolist())
train_y.append(y.tolist())
batch_index.append((len(normalized_train_data)-time_step))
return batch_index,train_x,train_y
#获取测试集
def get_test_data(time_step=20,test_begin=5800):
data_test=data[test_begin:]
mean=np.mean(data_test,axis=0)
std=np.std(data_test,axis=0)
normalized_test_data=(data_test-mean)/std #标准化
size=(len(normalized_test_data)+time_step-1)//time_step #有size个sample
test_x,test_y=[],[]
for i in range(size-1):
x=normalized_test_data[i*time_step:(i+1)*time_step,:7]
y=normalized_test_data[i*time_step:(i+1)*time_step,7]
test_x.append(x.tolist())
test_y.extend(y)
test_x.append((normalized_test_data[(i+1)*time_step:,:7]).tolist())
test_y.extend((normalized_test_data[(i+1)*time_step:,7]).tolist())
return mean,std,test_x,test_y
#——————————————————定义神经网络变量——————————————————
#输入层、输出层权重、偏置
weights={
'in':tf.Variable(tf.random_normal([input_size,rnn_unit])),
'out':tf.Variable(tf.random_normal([rnn_unit,1]))
}
biases={
'in':tf.Variable(tf.constant(0.1,shape=[rnn_unit,])),
'out':tf.Variable(tf.constant(0.1,shape=[1,]))
}
#——————————————————定义神经网络变量——————————————————
def lstm(X):
batch_size=tf.shape(X)[0]
time_step=tf.shape(X)[1]
w_in=weights['in']
b_in=biases['in']
input=tf.reshape(X,[-1,input_size]) #需要将tensor转成2维进行计算,计算后的结果作为隐藏层的输入
input_rnn=tf.matmul(input,w_in)+b_in
input_rnn=tf.reshape(input_rnn,[-1,time_step,rnn_unit]) #将tensor转成3维,作为lstm cell的输入
#cell=tf.nn.rnn_cell.BasicLSTMCell(rnn_unit)
cell=rnn.BasicLSTMCell(rnn_unit, reuse=tf.get_variable_scope().reuse)
init_state=cell.zero_state(batch_size,dtype=tf.float32)
output_rnn,final_states=tf.nn.dynamic_rnn(cell, input_rnn,initial_state=init_state, dtype=tf.float32)
output=tf.reshape(output_rnn,[-1,rnn_unit])
w_out=weights['out']
b_out=biases['out']
pred=tf.matmul(output,w_out)+b_out
return pred,final_states
#————————————————训练模型————————————————————
def train_lstm(batch_size=60,time_step=20,train_begin=2000,train_end=5800):
X=tf.placeholder(tf.float32, shape=[None,time_step,input_size])
Y=tf.placeholder(tf.float32, shape=[None,time_step,output_size])
batch_index,train_x,train_y=get_train_data(batch_size,time_step,train_begin,train_end)
with tf.variable_scope("sec_lstm"):
pred,_=lstm(X)
loss=tf.reduce_mean(tf.square(tf.reshape(pred,[-1])-tf.reshape(Y, [-1])))
train_op=tf.train.AdamOptimizer(lr).minimize(loss)
saver=tf.train.Saver(tf.global_variables(),max_to_keep=15)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(2000): #这个迭代次数,可以更改,越大预测效果会更好,但需要更长时间
for step in range(len(batch_index)-1):
_,loss_=sess.run([train_op,loss],feed_dict={X:train_x[batch_index[step]:batch_index[step+1]],Y:train_y[batch_index[step]:batch_index[step+1]]})
print("Number of iterations:",i," loss:",loss_)
print("model_save: ",saver.save(sess,'model_save2\\modle.ckpt'))
#我是在window下跑的,这个地址是存放模型的地方,模型参数文件名为modle.ckpt
#在Linux下面用 'model_save2/modle.ckpt'
print("The train has finished")
train_lstm()
#————————————————预测模型————————————————————
def prediction(time_step=20):
X=tf.placeholder(tf.float32, shape=[None,time_step,input_size])
mean,std,test_x,test_y=get_test_data(time_step)
with tf.variable_scope("sec_lstm",reuse=True):
pred,_=lstm(X)
saver=tf.train.Saver(tf.global_variables())
with tf.Session() as sess:
#参数恢复
module_file = tf.train.latest_checkpoint('model_save2')
saver.restore(sess, module_file)
test_predict=[]
for step in range(len(test_x)-1):
prob=sess.run(pred,feed_dict={X:[test_x[step]]})
predict=prob.reshape((-1))
test_predict.extend(predict)
test_y=np.array(test_y)*std[7]+mean[7]
test_predict=np.array(test_predict)*std[7]+mean[7]
acc=np.average(np.abs(test_predict-test_y[:len(test_predict)])/test_y[:len(test_predict)]) #偏差程度
print("The accuracy of this predict:",acc)
#以折线图表示结果
plt.figure()
plt.plot(list(range(len(test_predict))), test_predict, color='b',)
plt.plot(list(range(len(test_y))), test_y, color='r')
plt.show()
prediction()