先了解FF思想以及了解EK算法
传送门
但是EK算法为什么如此朴素?
知道了增广路的实现,但是单纯地这样选择可能会陷入不好的境地,比如说这个经典的例子:
我们一眼可以看出最大流是999(s->v->t)+999(s->u->t),但如果程序采取了不恰当的增广策略:s->v->u->t
我们发现中间会加一条u->v的边
而下一次增广时:
若选择了s->u->v->t
然后就变成
这是个非常低效的过程,并且当图中的999变成更大的数时,这个劣势还会更加明显。
这时引入Dinic算法,这是个很好的处理过程
为了解决我们上面遇到的低效方法,Dinic算法引入了一个叫做分层图的概念。具体就是对于每一个点,我们根据从源点开始的bfs序列,为每一个点分配一个深度,然后我们进行若干遍dfs寻找增广路,每一次由u推出v必须保证v的深度必须是u的深度+1
一些定义:
int s,t;//源点和汇点
int cnt;//边的数量,从0开始编号。
int Head[maxN];//每一个点最后一条边的编号
int Next[maxM];//指向对应点的前一条边
int V[maxM];//每一条边指向的点
int W[maxM];//每一条边的残量
int Depth[maxN];//分层图中标记深度
Dinic主要过程:
int Dinic()
{
int Ans=0;//记录最大流量
while (bfs())
{
while (int d=dfs(s,inf))
Ans+=d;
}
return Ans;
}
bfs分层图过程:
bool bfs()
{
queue Q;//定义一个bfs寻找分层图时的队列
while (!Q.empty())
Q.pop();
memset(Depth,0,sizeof(Depth));
Depth[s]=1;//源点深度为1
Q.push(s);
do
{
int u=Q.front();
Q.pop();
for (int i=Head[u];i!=-1;i=Next[i])
if ((W[i]>0)&&(Depth[V[i]]==0))//若该残量不为0,且V[i]还未分配深度,则给其分配深度并放入队列
{
Depth[V[i]]=Depth[u]+1;
Q.push(V[i]);
}
}
while (!Q.empty());
if (Depth[t]==0)//当汇点的深度不存在时,说明不存在分层图,同时也说明不存在增广路
return 0;
return 1;
}
dfs寻找增广路过程:
int dfs(int u,int dist)//u是当前节点,dist是当前流量
{
if (u==t)//当已经到达汇点,直接返回
return dist;
for (int i=Head[u];i!=-1;i=Next[i])
{
if ((Depth[V[i]]==Depth[u]+1)&&(W[i]!=0))//注意这里要满足分层图和残量不为0两个条件
{
int di=dfs(V[i],min(dist,W[i]));//向下增广
if (di>0)//若增广成功
{
W[i]-=di;//正向边减
W[i^1]+=di;反向边加
return di;//向上传递
}
}
}
return 0;//否则说明没有增广路,返回0
}
Dinic算法还有个好的优化:
这个优化被称为当前弧优化,即每一次dfs增广时不从第一条边开始,而是用一个数组cur记录点u之前循环到了哪一条边,以此来加速
附上代码:
class Graph
{
private:
int cnt;
int Head[maxN];
int Next[maxM];
int W[maxM];
int V[maxM];
int Depth[maxN];
int cur[maxN];//cur就是记录当前点u循环到了哪一条边
public:
int s,t;
void init()
{
cnt=-1;
memset(Head,-1,sizeof(Head));
memset(Next,-1,sizeof(Next));
}
void _Add(int u,int v,int w)
{
cnt++;
Next[cnt]=Head[u];
Head[u]=cnt;
V[cnt]=v;
W[cnt]=w;
}
void Add_Edge(int u,int v,int w)
{
_Add(u,v,w);
_Add(v,u,0);
}
int dfs(int u,int flow)
{
if (u==t)
return flow;
for (int& i=cur[u];i!=-1;i=Next[i])//注意这里的&符号,这样i增加的同时也能改变cur[u]的值,达到记录当前弧的目的
{
if ((Depth[V[i]]==Depth[u]+1)&&(W[i]!=0))
{
int di=dfs(V[i],min(flow,W[i]));
if (di>0)
{
W[i]-=di;
W[i^1]+=di;
return di;
}
}
}
return 0;
}
int bfs()
{
queue Q;
while (!Q.empty())
Q.pop();
memset(Depth,0,sizeof(Depth));
Depth[s]=1;
Q.push(s);
do
{
int u=Q.front();
Q.pop();
for (int i=Head[u];i!=-1;i=Next[i])
if ((Depth[V[i]]==0)&&(W[i]>0))
{
Depth[V[i]]=Depth[u]+1;
Q.push(V[i]);
}
}
while (!Q.empty());
if (Depth[t]>0)
return 1;
return 0;
}
int Dinic()
{
int Ans=0;
while (bfs())
{
for (int i=1;i<=n;i++)//每一次建立完分层图后都要把cur置为每一个点的第一条边 感谢@青衫白叙指出这里之前的一个疏漏
cur[i]=Head[i];
while (int d=dfs(s,inf))
{
Ans+=d;
}
}
return Ans;
}
};
再附上一发白书代码:
#include
using namespace std;
const int INF=0x3f3f3f3f;
const int MAX_V=100;
struct edge{
int to,cap,rev;
edge(int _to,int _cap,int _rev):to(_to),cap(_cap),rev(_rev){}
};
vectorG[MAX_V];
int level[MAX_V];
int iter[MAX_V];
int n,m;
void add_edge(int from,int to,int cap)
{
G[from].push_back(edge(to,cap,G[to].size()));
G[to].push_back(edge(from,0,G[from].size()-1));
}
void bfs(int s)
{
memset(level,-1,sizeof(level));
queueque;
level[s]=0;
que.push(s);
while(!que.empty()){
int v=que.front();que.pop();
for(int i=0;i0&&level[e.to]<0){
level[e.to]=level[v]+1;
que.push(e.to);
}
}
}
}
int dfs(int v,int t,int f)
{
if(v==t){
return f;
}
for(int &i=iter[v];i0&&level[v]0){
e.cap-=d;
G[e.to][e.rev].cap+=d;
return d;
}
}
}
return 0;
}
int max_flow(int s,int t)
{
int flow=0;
for(;;){
bfs(s);
if(level[t]<0){
return flow;
}
memset(iter,0,sizeof(iter));
int f;
while((f=dfs(s,t,INF))>0){
flow+=f;
}
}
return flow;
}
int main()
{
int s,t;
scanf("%d%d%d%d",&n,&m,&s,&t);
int u,v,w;
for(int i=0;i
再附上kuangbin代码(bin巨的代码与众不同):
#include
using namespace std;
const int MAXN=2010;
const int MAXM=1200010;
const int INF=0x3f3f3f3f;
struct Edge{
int to,next,cap,flow;
}edge[MAXM];
int tol,head[MAXN];
void init()
{
tol=2;
memset(head,-1,sizeof(head));
}
void addedge(int u,int v,int w,int rw=0)
{
edge[tol].to=v;edge[tol].cap=w;edge[tol].flow=0;
edge[tol].next=head[u];head[u]=tol++;
edge[tol].to=u;edge[tol].cap=rw;edge[tol].flow=0;
edge[tol].next=head[v];head[v]=tol++;
}
int Q[MAXN];
int dep[MAXN],cur[MAXN],sta[MAXN];
bool bfs(int s,int t,int n)
{
int front=0,tail=0;
memset(dep,-1,sizeof(dep[0])*(n+1));
dep[s]=0;
Q[tail++]=s;
while(frontedge[i].flow&&dep[v]==-1){
dep[v]=dep[u]+1;
if(v==t){
return true;
}
Q[tail++]=v;
}
}
}
return false;
}
int dinic(int s,int t,int n)
{
int maxflow=0;
while(bfs(s,t,n)){
for(int i=0;i=0;i--){
tp=min(tp,edge[sta[i]].cap-edge[sta[i]].flow);
}
maxflow+=tp;
for(int i=tail-1;i>=0;i--){
edge[sta[i]].flow+=tp;
edge[sta[i]^1].flow-=tp;
if(edge[sta[i]].cap-edge[sta[i]].flow==0){
tail=i;
}
}
u=edge[sta[tail]^1].to;
}else if(cur[u]!=-1&&edge[cur[u]].cap>edge[cur[u]].flow&&dep[u]+1==dep[edge[cur[u]].to]){
sta[tail++]=cur[u];
u=edge[cur[u]].to;
}else{
while(u!=s&&cur[u]==-1){
u=edge[sta[--tail]^1].to;
}
cur[u]=edge[cur[u]].next;
}
}
}
return maxflow;
}
int main()
{
int n,m,s,t;
scanf("%d%d%d%d",&n,&m,&s,&t);
int u,v,w;
init();
for(int i=0;i