- MATLAB 优化类算法的改进方向探索及仿真对比分析
鱼弦
人工智能时代算法matlab人工智能
MATLAB优化类算法的改进方向探索及仿真对比分析一、概述优化算法是解决复杂问题的有效工具,在工程设计、机器学习、数据分析等领域有着广泛应用。本文将探讨MATLAB中优化类算法的改进方向,并进行仿真对比分析,包括遗传算法、粒子群算法、模拟退火算法等。二、优化算法简介1.遗传算法(GA)原理:模拟生物进化过程,通过选择、交叉、变异等操作寻找最优解。优点:全局搜索能力强:能够跳出局部最优解。并行计算能
- 【Python打卡Day12】启发式算法 @浙大疏锦行
可能是猫猫人
Python打卡训练营内容启发式算法算法
今天学习遗传算法,在以后的论文写作中可以水一节,胆子大的人才可以水一章这些算法仅作为你的了解,不需要开始学习,如果以后需要在论文中用到,在针对性的了解下处理逻辑。下面介绍这几种常见的优化算法遗传算法粒子群优化模拟退火##1.数据处理+划分训练和测试importpandasaspdimportpandasaspd#用于数据处理和分析,可处理表格数据。importnumpyasnp#用于数值计算,提供
- Python 模拟退火算法
神仙别闹
Python教程模拟退火算法算法
模拟退火算法借鉴了统计物理学的思想,是一种简单、通用的启发式优化算法,并在理论上具有概率性全局优化性能,因而在科研和工程中得到了广泛的应用。退火是金属从熔融状态缓慢冷却、最终达到能量最低的平衡态的过程。模拟退火算法基于优化问题求解过程与金属退火过程的相似性,以优化目标为能量函数,以解空间为状态空间,以随机扰动模拟粒子的热运动来求解优化问题。模拟退火算法结构简单,由温度更新函数、状态产生函数、状态接
- Python实现模拟退火算法
qq_39605374
模拟退火算法算法机器学习python
Python实现模拟退火算法模拟退火算法(simulatedannealing)是一种常用的优化算法。它通过在搜索过程中逐渐降低温度的方式来避免陷入局部最优解,并最终找到全局最优解。本文将介绍如何使用Python实现模拟退火算法,并给出完整源码。一、算法思路模拟退火算法的基本思路是从一个初始解开始,按照一定的概率接受较差的解,在接受较差解的同时,随机扰动当前解,继续搜索。在搜索过程中,算法会逐渐降
- python学智能算法(一)|模拟退火算法:原理解释和最小值求解
西猫雷婶
人工智能python学习笔记模拟退火算法算法机器学习
【1】引言python具备强大的数据处理功能,但数据处理往往需要结合智能算法,本次文章就学习用python仿真模拟退火算法。【2】模拟退火算法模拟退火算法本质和其名称一样,以金属材料热处理的退火过程为模拟对象,模拟退火过程中的物理变化规律来处理数据。当温度较高时,金属材料内的粒子具有较高的自由运动能量;随着温度降低,粒子的自由运动能量逐渐降低;完全冷却后,粒子没有自由运动能量,材料的性能达到稳定。
- Python33 智能优化算法之粒子群算法PSO
智能建造研究生
智能优化算法AI算法的Python实现python学习算法机器学习人工智能
智能优化算法是一类受自然界生物、物理、化学等现象启发而设计的优化算法,具备全局搜索能力,能够在复杂、多峰的搜索空间中找到近似全局最优解,常用于解决各种实际中的复杂优化问题。典型的智能优化算法包括遗传算法、粒子群优化、蚁群算法、模拟退火等。1.主要的智能优化算法遗传算法(GeneticAlgorithm,GA):基于自然选择和遗传机制的优化算法,广泛用于各种优化问题。粒子群优化算法(Particle
- 模拟退火算法(Simulated Annealing,简称SA)
深度学习客
算法优化模拟退火算法算法机器学习人工智能深度学习数据挖掘
目录模拟退火算法的详解1.基本原理2.算法步骤2.1.初始化2.2.迭代搜索2.3.温度更新2.4.终止条件3.参数调整4.应用案例5.优势与局限性总结模拟退火算法的Python示例与解释1.导入所需的库2.定义问题参数和函数3.模拟退火算法实现4.使用模拟退火算法解决TSP问题5.结果可视化总结模拟退火算法的详解模拟退火算法(SimulatedAnnealing,简称SA)是一种用于解决优化问题
- Day 12 训练
Nina_717
python打卡训练营python
Day12训练1.遗传算法2.粒子群优化(ParticleSwarmOptimization,PSO)3.模拟退火(SimulatedAnnealing,SA)超参数调整专题21.三种启发式算法的示例代码:遗传算法、粒子群算法、退火算法2.学习优化算法的思路(避免浪费无效时间)作业:今天以自由探索的思路为主,尝试检索资料、视频、文档,用尽可能简短但是清晰的语言看是否能说清楚这三种算法每种算法的实现
- 60天Python训练 day12
only_only_you
python开发语言
常见的几种优化算法:遗传算法粒子群优化模拟退火核心思想:这些启发式算法都是优化器。你的目标是找到一组超参数,让你的机器学习模型在某个指标(比如验证集准确率)上表现最好。这个过程就像在一个复杂的地形(参数空间)上寻找最高峰(最佳性能)。启发式算法就是一群聪明的“探险家”,它们用不同的策略(模仿自然、物理现象等)来寻找这个最高峰,而不需要知道地形每一处的精确梯度(导数)。遗传算法灵感来源:生物进化,达
- DAY12 超参数调整专题2
m0_57278362
python学习python
三种启发式算法的示例代码:遗传算法、粒子群算法、退火算法模拟退火算法(SimulatedAnnealing)是一种受金属退火过程启发的全局优化算法,通过模拟降温过程中的热力学平衡来避免陷入局部最优。以下是其核心实现逻辑:1.算法核心思想允许以一定概率接受比当前解更差的解,随着温度降低逐渐减少这种概率,从而平衡全局探索(高温阶段)和局部收敛(低温阶段)。2.实现步骤(1)初始化参数初始温度(T):较
- 模拟退火,百炼成钢
CIb0la
方法论生活学习程序人生
我是学专业数学出身,数学里有一个课程叫做最优化求解。英文是Optimization,中文直翻是最优化。一般是设置一个初始条件,然后在一个连续函数上找到符合条件的最大值或者最小值,通常在数学上叫做最优解。有时候,初始条件本身并不收窄,甚至就是一个函数范围,这会导致解有也不确定,变为一个范围或者说是有一个方程解。这时候的解被称作容许集。对于无约束的优化问题,如果函数是二次可微的话,那么可以通过找到目标
- 【EDA】Placement(布局)
Mike_Zhg
布局
第四章:Placement(布局)在VLSI物理设计中,布局(Placement)的目标是确定电路中每个模块(或门)的位置,以最小化线长、时序延迟或功耗,同时满足面积和拥塞约束。第四章聚焦三种经典布局算法,涵盖递归划分、解析优化和模拟退火,以下是详细介绍:1.最小割布局(MincutPlacement)核心目标通过递归二分划分电路,每次切割最小化跨分区连接(割集),结合终端传播优化模块位置,减少全
- floyd matlab 无向图 最短路径 数学建模_在数学建模中常用的方法
李培智
floydmatlab无向图最短路径数学建模
在数学建模中常用的方法:类比法、二分法、量纲分析法、差分法、变分法、图论法、层次分析法、数据拟合法、回归分析法、数学规划(线性规划,非线性规划,整数规划,动态规划,目标规划)、机理分析、排队方法、对策方法、决策方法、模糊评判方法、时间序列方法、灰色理论方法、现代优化算法(禁忌搜索算法,模拟退火算法,遗传算法,神经网络)。用这些方法可以解下列一些模型:优化模型、微分方程模型、统计模型、概率模型、图论
- 全国大学生数学建模竞赛历年赛题及优秀论文(链接见ping论)
爱建模的小鹿
算法回归matlab
在数学建模中常用的方法:类比法、二分法、量纲分析法、差分法、变分法、图论法、层次分析法、数据拟合法、回归分析法、数学规划(线性规划,非线性规划,整数规划,动态规划,目标规划)、机理分析、排队方法、对策方法、决策方法、模糊评判方法、时间序列方法、灰色理论方法、现代优化算法(禁忌搜索算法,模拟退火算法,遗传算法,神经网络)。用这些方法可以解下列一些模型:优化模型、微分方程模型、统计模型、概率模型、图论
- 粒子群算法详解---ChatGPT4o作答
部分分式
算法人工智能机器学习
粒子群优化算法(ParticleSwarmOptimization,PSO)是一种基于群体智能的全局优化算法,灵感来源于鸟群觅食、鱼群游动等生物群体行为。PSO算法由Kennedy和Eberhart于1995年提出,它是一种模拟自然界群体智能的优化方法,具有良好的全局搜索能力和计算效率。PSO是启发式搜索算法中的一种,与遗传算法(GA)、模拟退火(SA)等其他优化方法一样,属于群体智能类算法(Sw
- 【三维装箱】遗传算法和模拟退火算法求解三维装箱优化问题(含空间利用率 重量利用率 综合利用率)【含Matlab源码 XYWH023期】
Matlab领域
Matlab优化求解(高阶版)matlab
Matlab领域博客之家博主简介:985研究生,Matlab领域科研开发者;个人主页:Matlab领域代码获取方式:CSDNMatlab领域—代码获取方式座右铭:路漫漫其修远兮,吾将上下而求索。更多Matlab优化求解仿真内容点击①Matlab优化求解(高阶版)②付费专栏Matlab优化求解(进阶版)③付费专栏Matlab优化求解(初级版)⛳️关注CSDNMatlab领域,更多资源等你来!!⛄一、
- 【Matlab】-- 基于MATLAB的美赛常用多种算法
电科_银尘
Matlab程序matlab算法数学建模
文章目录文章目录01内容概要02各种算法基本原理03部分代码04代码下载01内容概要本资料集合了多种数学建模和优化算法的常用代码资源,旨在为参与美国大学生数学建模竞赛(MCM/ICM,简称美赛)的参赛者提供实用的编程工具和算法实现。这些算法包括BP神经网络、CT图像重建、Floyd算法、Topsis算法、层次分析法、分支定界法、灰色预测、粒子群算法、模拟退火算法(特别适用于TSP和背包问题)、人口
- 量子边缘计算:当Wasm遇见量子退火机——解锁组合优化问题的终极加速方案
Eqwaak00
分布式系统设计实战量子计算python大数据自动化
一、引言:组合优化问题的挑战与机遇在物流调度、金融投资、芯片设计等领域,组合优化问题(CombinatorialOptimization)因其高复杂度和NP-Hard特性,一直是学术界和工业界的核心挑战。例如,一个包含100个城市的旅行商问题(TSP),其可能的路径组合高达1015510155种,即使用超级计算机也需要数年才能穷举所有解。传统启发式算法(如遗传算法、模拟退火)虽能提供近似解,但面对
- YOLOv11改进 | 注意力篇 | YOLOv11引入24年ECCV的自调制特征聚合注意力模块(SMFA),并构建C2PSA_SMFA
小李学AI
YOLOv11有效涨点专栏YOLO深度学习人工智能计算机视觉目标检测机器学习神经网络
1.SMFA介绍1.1摘要:基于Transformer的图像复原方法由于Transformer的自注意(self-attention,SA)特性能够更好地挖掘非局部信息,从而获得更好的高分辨率图像重建效果,因此具有重要的应用价值。然而,关键点积SA需要大量的计算资源,这限制了其在低功耗器件中的应用。此外,模拟退火机制的低通特性限制了其捕获局部细节的能力,从而导致平滑的重建结果。针对该问题,该文提出
- 群体智能优化算法-模拟退火优化算法(Simulated Annealing, SA,含Matlab源代码)
HR Zhou
算法模拟退火算法机器学习matlab群体智能优化优化人工智能
摘要模拟退火(SA)算法是一种基于物理退火过程的全局优化算法,其核心思想来源于热力学中的退火过程:将材料加热到高温后再缓慢冷却,使其分子结构趋于最低能量状态,从而获得稳定结构。SA算法利用Metropolis准则来决定接受新的解,以一定概率接受劣解,从而避免陷入局部最优。SA具有收敛速度快、计算复杂度低、适用于连续优化问题等特点,被广泛应用于组合优化、函数优化、神经网络训练等领域。算法介绍1.主要
- 模拟退火算法:原理、应用与优化策略
尹清雅
算法
摘要模拟退火算法是一种基于物理退火过程的随机搜索算法,在解决复杂优化问题上表现出独特优势。本文详细阐述模拟退火算法的原理,深入分析其核心要素,通过案例展示在函数优化、旅行商问题中的应用,并探讨算法的优化策略与拓展方向,为解决复杂优化问题提供全面的理论与实践指导,助力该算法在多领域的高效应用与创新发展。一、引言在现代科学与工程领域,复杂优化问题无处不在,如资源分配、路径规划、机器学习模型参数调优等。
- 模拟退火算法详解
琛哥的程序
算法模拟退火算法机器学习
一、引言模拟退火算法(SimulatedAnnealing,简称SA)是一种通用概率型优化算法,用来在一个大的搜寻空间内找寻问题的最优解。其出发点是基于物理中固体物质的退火过程与一般组合优化问题之间的相似性。模拟退火算法从某一较高初温出发,伴随温度参数的不断下降,结合概率突跳特性在解空间中随机寻找目标函数的全局最优解,即在局部最优解能概率性地跳出并最终趋于全局最优。二、算法原理物理退火过程加温过程
- python学智能算法(七)|KNN邻近算法
西猫雷婶
人工智能python学习笔记算法
【1】引言前述学习进程中,已经了解了一些非常经典的智能算法,相关文章包括且不限于:python学智能算法(三)|模拟退火算法:深层分析_模拟退火动画演示-CSDN博客python学智能算法(四)|遗传算法:原理认识和极大值分析_遗传算法和模拟退火时间复杂度-CSDN博客python学智能算法(五)|差分进化算法:原理认识和极小值分析-CSDN博客python学智能算法(六)|神经网络算法:BP神经
- 浅谈模拟退火
Alaso_shuang
算法分类学习笔记算法
模拟退火简介模拟退火是一种随机化算法。对于一个当前最优解附近的非最优解,爬山算法直接舍去了这个解。而很多情况下,我们需要去接受这个非最优解从而跳出这个局部最优解,即为模拟退火算法。当一个问题的方案数量极大(甚至是无穷的)而且不是一个单峰函数时,常使用模拟退火求解。实现如果新状态的解更优则修改答案,否则以一定概率接受新状态。模拟退火时有三个参数:初始温度T_0,降温系数d,终止温度T_k。是一个比较
- 三种优化算法
旅者时光
算法算法python开发语言
本文将总结遗传算法、粒子群算法、模拟退火三种优化算法的核心思路,并使用python完整实现。实际上,越来越多的优秀算法已经被封装为一个易用的接口。很多时候,一行代码就能实现我们的需求。但了解这些算法的基本逻辑,能够使用最基本的代码实现它。无论对于提升我们的编程能力还是解决问题的能力,都会大有裨益。甚至,改变我们思考问题的方式。1、遗传算法遗传算法,顾名思义,就是借鉴了生物通过遗传变异来逐渐适应环境
- 寻找最优解的算法-模拟退火算法(Simulated Annealing)
搞技术的妹子
算法模拟退火算法人工智能
模拟退火算法(SimulatedAnnealing,简称SA)是一种基于物理退火过程的优化算法。它灵感来源于金属退火过程中的分子运动——在高温下,金属分子的自由度很高,随着温度的逐渐降低,分子排列逐渐有序,最终达到最低能量状态。退火算法通过模拟这一过程,解决复杂的优化问题。在现实生活中,我们经常会遇到寻找最优解的问题,无论是优化路线、调度任务还是调整模型参数。模拟退火算法(SimulatedAnn
- 【人工智能算法】人工智能算法都包括什么?请详细列出和解释
资源存储库
算法强化学习人工智能算法
目录人工智能算法都包括什么?请详细列出和解释1.机器学习算法(MachineLearningAlgorithms)监督学习算法(SupervisedLearning)无监督学习算法(UnsupervisedLearning)强化学习算法(ReinforcementLearning)2.进化算法(EvolutionaryAlgorithms)3.模拟退火(SimulatedAnnealing)4.粒
- ACM算法与竞赛基地:蓝桥备战 --- 二分篇
NONE-C
蓝桥杯算法数据结构
ACM基地:蓝桥备战—二分篇什么是二分?二分是一种搜索策略,类似于高速中学到的梯度下降法,当我们落在某一点是沿着该点斜率,我们可以像最优处移动,二分也是样的策略,但其更加严格,现代算法,如模拟退火,蚁群算法,BP算法针对的都是存在多种最优解,解决的问题也更加宽泛,而作为传统算法的二分,有着更加严格的限制,想要理解二分,必须要对该限制有深刻理解。接下来我们将展开对二分的学习二分查找+二分答案key1
- 机器学习库
Welosthesightof
笔记
机器学习一個很棒的機器學習框架、庫和軟件的精選列表(按語言)。靈感來自於awesome-php。计算机视觉Scikit-Image-Python中图像处理算法的集合。Scikit-Opt-Python中的群智能(Python中的遗传算法、粒子群优化、模拟退火、蚁群算法、免疫算法、人工鱼群算法)SimpleCV-一个开源计算机视觉框架,可以访问多个高性能计算机视觉库,例如OpenCV。用Python
- 机器学习杂记
被自己蠢哭了
深度学习机器学习
过拟合处理方法:早停正则化dropout数据增广避免局部极小值方法:以不同的初始值来训练网络,最终选取最小的。使用模拟退火技术。模拟退火在每一步都以一定的概率接受比当前解更差的结果,从而有助于跳出局部极小。在每一步迭代过程中,接受次优解的概率要随着时间的推移而逐渐降低,从而保证算法稳定。使用随机梯度下降。与标准梯度下降精确计算梯度不同,随机梯度下降算法在计算梯度时加入了随机因素。于是,即使陷入局部
- 多线程编程之卫生间
周凡杨
java并发卫生间线程厕所
如大家所知,火车上车厢的卫生间很小,每次只能容纳一个人,一个车厢只有一个卫生间,这个卫生间会被多个人同时使用,在实际使用时,当一个人进入卫生间时则会把卫生间锁上,等出来时打开门,下一个人进去把门锁上,如果有一个人在卫生间内部则别人的人发现门是锁的则只能在外面等待。问题分析:首先问题中有两个实体,一个是人,一个是厕所,所以设计程序时就可以设计两个类。人是多数的,厕所只有一个(暂且模拟的是一个车厢)。
- How to Install GUI to Centos Minimal
sunjing
linuxInstallDesktopGUI
http://www.namhuy.net/475/how-to-install-gui-to-centos-minimal.html
I have centos 6.3 minimal running as web server. I’m looking to install gui to my server to vnc to my server. You can insta
- Shell 函数
daizj
shell函数
Shell 函数
linux shell 可以用户定义函数,然后在shell脚本中可以随便调用。
shell中函数的定义格式如下:
[function] funname [()]{
action;
[return int;]
}
说明:
1、可以带function fun() 定义,也可以直接fun() 定义,不带任何参数。
2、参数返回
- Linux服务器新手操作之一
周凡杨
Linux 简单 操作
1.whoami
当一个用户登录Linux系统之后,也许他想知道自己是发哪个用户登录的。
此时可以使用whoami命令。
[ecuser@HA5-DZ05 ~]$ whoami
e
- 浅谈Socket通信(一)
朱辉辉33
socket
在java中ServerSocket用于服务器端,用来监听端口。通过服务器监听,客户端发送请求,双方建立链接后才能通信。当服务器和客户端建立链接后,两边都会产生一个Socket实例,我们可以通过操作Socket来建立通信。
首先我建立一个ServerSocket对象。当然要导入java.net.ServerSocket包
ServerSock
- 关于框架的简单认识
西蜀石兰
框架
入职两个月多,依然是一个不会写代码的小白,每天的工作就是看代码,写wiki。
前端接触CSS、HTML、JS等语言,一直在用的CS模型,自然免不了数据库的链接及使用,真心涉及框架,项目中用到的BootStrap算一个吧,哦,JQuery只能算半个框架吧,我更觉得它是另外一种语言。
后台一直是纯Java代码,涉及的框架是Quzrtz和log4j。
都说学前端的要知道三大框架,目前node.
- You have an error in your SQL syntax; check the manual that corresponds to your
林鹤霄
You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'option,changed_ids ) values('0ac91f167f754c8cbac00e9e3dc372
- MySQL5.6的my.ini配置
aigo
mysql
注意:以下配置的服务器硬件是:8核16G内存
[client]
port=3306
[mysql]
default-character-set=utf8
[mysqld]
port=3306
basedir=D:/mysql-5.6.21-win
- mysql 全文模糊查找 便捷解决方案
alxw4616
mysql
mysql 全文模糊查找 便捷解决方案
2013/6/14 by 半仙
[email protected]
目的: 项目需求实现模糊查找.
原则: 查询不能超过 1秒.
问题: 目标表中有超过1千万条记录. 使用like '%str%' 进行模糊查询无法达到性能需求.
解决方案: 使用mysql全文索引.
1.全文索引 : MySQL支持全文索引和搜索功能。MySQL中的全文索
- 自定义数据结构 链表(单项 ,双向,环形)
百合不是茶
单项链表双向链表
链表与动态数组的实现方式差不多, 数组适合快速删除某个元素 链表则可以快速的保存数组并且可以是不连续的
单项链表;数据从第一个指向最后一个
实现代码:
//定义动态链表
clas
- threadLocal实例
bijian1013
javathreadjava多线程threadLocal
实例1:
package com.bijian.thread;
public class MyThread extends Thread {
private static ThreadLocal tl = new ThreadLocal() {
protected synchronized Object initialValue() {
return new Inte
- activemq安全设置—设置admin的用户名和密码
bijian1013
javaactivemq
ActiveMQ使用的是jetty服务器, 打开conf/jetty.xml文件,找到
<bean id="adminSecurityConstraint" class="org.eclipse.jetty.util.security.Constraint">
<p
- 【Java范型一】Java范型详解之范型集合和自定义范型类
bit1129
java
本文详细介绍Java的范型,写一篇关于范型的博客原因有两个,前几天要写个范型方法(返回值根据传入的类型而定),竟然想了半天,最后还是从网上找了个范型方法的写法;再者,前一段时间在看Gson, Gson这个JSON包的精华就在于对范型的优雅简单的处理,看它的源代码就比较迷糊,只其然不知其所以然。所以,还是花点时间系统的整理总结下范型吧。
范型内容
范型集合类
范型类
- 【HBase十二】HFile存储的是一个列族的数据
bit1129
hbase
在HBase中,每个HFile存储的是一个表中一个列族的数据,也就是说,当一个表中有多个列簇时,针对每个列簇插入数据,最后产生的数据是多个HFile,每个对应一个列族,通过如下操作验证
1. 建立一个有两个列族的表
create 'members','colfam1','colfam2'
2. 在members表中的colfam1中插入50*5
- Nginx 官方一个配置实例
ronin47
nginx 配置实例
user www www;
worker_processes 5;
error_log logs/error.log;
pid logs/nginx.pid;
worker_rlimit_nofile 8192;
events {
worker_connections 4096;}
http {
include conf/mim
- java-15.输入一颗二元查找树,将该树转换为它的镜像, 即在转换后的二元查找树中,左子树的结点都大于右子树的结点。 用递归和循环
bylijinnan
java
//use recursion
public static void mirrorHelp1(Node node){
if(node==null)return;
swapChild(node);
mirrorHelp1(node.getLeft());
mirrorHelp1(node.getRight());
}
//use no recursion bu
- 返回null还是empty
bylijinnan
javaapachespring编程
第一个问题,函数是应当返回null还是长度为0的数组(或集合)?
第二个问题,函数输入参数不当时,是异常还是返回null?
先看第一个问题
有两个约定我觉得应当遵守:
1.返回零长度的数组或集合而不是null(详见《Effective Java》)
理由就是,如果返回empty,就可以少了很多not-null判断:
List<Person> list
- [科技与项目]工作流厂商的战略机遇期
comsci
工作流
在新的战略平衡形成之前,这里有一个短暂的战略机遇期,只有大概最短6年,最长14年的时间,这段时间就好像我们森林里面的小动物,在秋天中,必须抓紧一切时间存储坚果一样,否则无法熬过漫长的冬季。。。。
在微软,甲骨文,谷歌,IBM,SONY
- 过度设计-举例
cuityang
过度设计
过度设计,需要更多设计时间和测试成本,如无必要,还是尽量简洁一些好。
未来的事情,比如 访问量,比如数据库的容量,比如是否需要改成分布式 都是无法预料的
再举一个例子,对闰年的判断逻辑:
1、 if($Year%4==0) return True; else return Fasle;
2、if ( ($Year%4==0 &am
- java进阶,《Java性能优化权威指南》试读
darkblue086
java性能优化
记得当年随意读了微软出版社的.NET 2.0应用程序调试,才发现调试器如此强大,应用程序开发调试其实真的简单了很多,不仅仅是因为里面介绍了很多调试器工具的使用,更是因为里面寻找问题并重现问题的思想让我震撼,时隔多年,Java已经如日中天,成为许多大型企业应用的首选,而今天,这本《Java性能优化权威指南》让我再次找到了这种感觉,从不经意的开发过程让我刮目相看,原来性能调优不是简单地看看热点在哪里,
- 网络学习笔记初识OSI七层模型与TCP协议
dcj3sjt126com
学习笔记
协议:在计算机网络中通信各方面所达成的、共同遵守和执行的一系列约定 计算机网络的体系结构:计算机网络的层次结构和各层协议的集合。 两类服务: 面向连接的服务通信双方在通信之前先建立某种状态,并在通信过程中维持这种状态的变化,同时为服务对象预先分配一定的资源。这种服务叫做面向连接的服务。 面向无连接的服务通信双方在通信前后不建立和维持状态,不为服务对象
- mac中用命令行运行mysql
dcj3sjt126com
mysqllinuxmac
参考这篇博客:http://www.cnblogs.com/macro-cheng/archive/2011/10/25/mysql-001.html 感觉workbench不好用(有点先入为主了)。
1,安装mysql
在mysql的官方网站下载 mysql 5.5.23 http://www.mysql.com/downloads/mysql/,根据我的机器的配置情况选择了64
- MongDB查询(1)——基本查询[五]
eksliang
mongodbmongodb 查询mongodb find
MongDB查询
转载请出自出处:http://eksliang.iteye.com/blog/2174452 一、find简介
MongoDB中使用find来进行查询。
API:如下
function ( query , fields , limit , skip, batchSize, options ){.....}
参数含义:
query:查询参数
fie
- base64,加密解密 经融加密,对接
y806839048
经融加密对接
String data0 = new String(Base64.encode(bo.getPaymentResult().getBytes(("GBK"))));
String data1 = new String(Base64.decode(data0.toCharArray()),"GBK");
// 注意编码格式,注意用于加密,解密的要是同
- JavaWeb之JSP概述
ihuning
javaweb
什么是JSP?为什么使用JSP?
JSP表示Java Server Page,即嵌有Java代码的HTML页面。使用JSP是因为在HTML中嵌入Java代码比在Java代码中拼接字符串更容易、更方便和更高效。
JSP起源
在很多动态网页中,绝大部分内容都是固定不变的,只有局部内容需要动态产生和改变。
如果使用Servl
- apple watch 指南
啸笑天
apple
1. 文档
WatchKit Programming Guide(中译在线版 By @CocoaChina) 译文 译者 原文 概览 - 开始为 Apple Watch 进行开发 @星夜暮晨 Overview - Developing for Apple Watch 概览 - 配置 Xcode 项目 - Overview - Configuring Yo
- java经典的基础题目
macroli
java编程
1.列举出 10个JAVA语言的优势 a:免费,开源,跨平台(平台独立性),简单易用,功能完善,面向对象,健壮性,多线程,结构中立,企业应用的成熟平台, 无线应用 2.列举出JAVA中10个面向对象编程的术语 a:包,类,接口,对象,属性,方法,构造器,继承,封装,多态,抽象,范型 3.列举出JAVA中6个比较常用的包 Java.lang;java.util;java.io;java.sql;ja
- 你所不知道神奇的js replace正则表达式
qiaolevip
每天进步一点点学习永无止境纵观千象regex
var v = 'C9CFBAA3CAD0';
console.log(v);
var arr = v.split('');
for (var i = 0; i < arr.length; i ++) {
if (i % 2 == 0) arr[i] = '%' + arr[i];
}
console.log(arr.join(''));
console.log(v.r
- [一起学Hive]之十五-分析Hive表和分区的统计信息(Statistics)
superlxw1234
hivehive分析表hive统计信息hive Statistics
关键字:Hive统计信息、分析Hive表、Hive Statistics
类似于Oracle的分析表,Hive中也提供了分析表和分区的功能,通过自动和手动分析Hive表,将Hive表的一些统计信息存储到元数据中。
表和分区的统计信息主要包括:行数、文件数、原始数据大小、所占存储大小、最后一次操作时间等;
14.1 新表的统计信息
对于一个新创建
- Spring Boot 1.2.5 发布
wiselyman
spring boot
Spring Boot 1.2.5已在7月2日发布,现在可以从spring的maven库和maven中心库下载。
这个版本是一个维护的发布版,主要是一些修复以及将Spring的依赖提升至4.1.7(包含重要的安全修复)。
官方建议所有的Spring Boot用户升级这个版本。
项目首页 | 源