type_traits技术与C++

引言

一个方法实现过程中,业务逻辑很多都是相似的,但是与具体的特化类型的不同有一定的差异。
这个时候可以采用特化模板的方式实现,不同的类型使用不同的特化实现。但是这种情况造成一定的业务逻辑的冗余。而trait技术可以将特化类型通过封装,以一个统一的调用方式实现相同的业务逻辑。

Type_traits技术

type_traits可以翻译为类型提取器或者类型萃取器,很直白的说就是通过这个机制可以获取被操作数据类型的一些特征。这个机制在编写模板代码的时候特别有用,可以在编译期间就根据数据类型的特征分派给不同的代码进行处理。

STL中关于copy的代码

// This header file provides a framework for allowing compile time dispatch
// based on type attributes. This is useful when writing template code.
// For example, when making a copy of an array of an unknown type, it helps
// to know if the type has a trivial copy constructor or not, to help decide
// if a memcpy can be used.
struct __true_type {
};
struct __false_type {
};
template <class _Tp>
struct __type_traits { 
   typedef __true_type     this_dummy_member_must_be_first;
                   /* Do not remove this member. It informs a compiler which
                      automatically specializes __type_traits that this
                      __type_traits template is special. It just makes sure that
                      things work if an implementation is using a template
                      called __type_traits for something unrelated. */
   /* The following restrictions should be observed for the sake of
      compilers which automatically produce type specific specializations 
      of this class:
          - You may reorder the members below if you wish
          - You may remove any of the members below if you wish
          - You must not rename members without making the corresponding
            name change in the compiler
          - Members you add will be treated like regular members unless
            you add the appropriate support in the compiler. */
 
   typedef __false_type    has_trivial_default_constructor;
   typedef __false_type    has_trivial_copy_constructor;
   typedef __false_type    has_trivial_assignment_operator;
   typedef __false_type    has_trivial_destructor;
   typedef __false_type    is_POD_type;
};
// The class template __type_traits provides a series of typedefs each of
// which is either __true_type or __false_type. The argument to
// __type_traits can be any type. The typedefs within this template will
// attain their correct values by one of these means:
//     1. The general instantiation contain conservative values which work
//        for all types.
//     2. Specializations may be declared to make distinctions between types.
//     3. Some compilers (such as the Silicon Graphics N32 and N64 compilers)
//        will automatically provide the appropriate specializations for all
//        types.
// EXAMPLE:
//Copy an array of elements which have non-trivial copy constructors
template <class T> void copy(T* source, T* destination, int n, __false_type);
//Copy an array of elements which have trivial copy constructors. Use memcpy.
template <class T> void copy(T* source, T* destination, int n, __true_type);
//Copy an array of any type by using the most efficient copy mechanism
template <class T> inline void copy(T* source,T* destination,int n) {
   copy(source, destination, n,
        typename __type_traits<T>::has_trivial_copy_constructor());
}

POD意思是Plain Old Data,也就是标量性别或者传统的C struct型别。POD性别必然拥有trivial ctor/dctor/copy/assignment 函数,因此我们就可以对POD型别采用最为有效的复制方法,而对non-POD型别采用最保险安全的方法

// uninitialized_copy
// Valid if copy construction is equivalent to assignment, and if the
//  destructor is trivial.
template <class _InputIter, class _ForwardIter>
inline _ForwardIter 
__uninitialized_copy_aux(_InputIter __first, _InputIter __last,
                         _ForwardIter __result,
                         __true_type)
{
  return copy(__first, __last, __result);
}
template <class _InputIter, class _ForwardIter>
_ForwardIter 
__uninitialized_copy_aux(_InputIter __first, _InputIter __last,
                         _ForwardIter __result,
                         __false_type)
{
  _ForwardIter __cur = __result;
  __STL_TRY {
    for ( ; __first != __last; ++__first, ++__cur)
      _Construct(&*__cur, *__first);
    return __cur;
  }
  __STL_UNWIND(_Destroy(__result, __cur));
}
template <class _InputIter, class _ForwardIter, class _Tp>
inline _ForwardIter
__uninitialized_copy(_InputIter __first, _InputIter __last, _ForwardIter __result, _Tp*)
{
  typedef typename __type_traits<_Tp>::is_POD_type _Is_POD;
  return __uninitialized_copy_aux(__first, __last, __result, _Is_POD());
}

trait技术和template 元编程的例子

template<template<int> class LOGICAL, class SEQUENCE>
struct sequence_any;

template<template<int> class LOGICAL, int NUM, int...NUMS>
struct sequence_any<LOGICAL, sequence<NUM, NUMS...> >
{
	static const bool value = LOGICAL<NUM>::value || sequence_any<LOGICAL, sequence<NUMS...>>::value;
};

template<template<int> class LOGICAL>
struct sequence_any<LOGICAL, sequence<> >
{
	static const bool value = false;
};
template<int A>
struct static_is_zero
{
	static const bool value = false;
};
template<>
struct static_is_zero<0>
{
	static const bool value = true;
};
 const bool SINGLEROWOPT = 
sequence_any<static_is_zero, sequence<SPECIALIZATIONS...>>::value;

可参考学习的C++代码

  • Trait技术实现迭代器
  • https://github.com/cwlseu/codefeeling

其他相关问题

函数的调用过程

如果一个程序中很多多个同名的函数,那编译器是如何找应该调用哪一个函数呢?
编译器会通过如下顺序进行查找。

  1. 函数直接匹配
  2. 模板函数
  3. 通过一定的隐形转换数据类型可以调用
#include 
void func(float a) {
  std::cout << "float func:" << a << std::endl;
}
void func(int a) {
  std::cout << "int func:" << a << std::endl;
}
template <class T>
void func(T a) {
  std::cout << "template func:" << a << std::endl;
}
int main(int argc, char const *argv[])
{
  int ia = 1;
  func(ia);
  func<int>(ia);
  float fb = 2;
  func(fb);
  func<float>(fb);
  double db = 3;
  func(db);
  func<double>(db);
  return 0;
}

结果输出

int func:1
template func:1
float func:2
template func:2
template func:3
template func:3

模板函数的声明与定义一般有两种方式

  1. 声明定义在header文件中。这种情况往往是模板针对不同的类型处理方式是一样的,这样可以直接放到头文件中。当实际调用过程中实现template的调用
  2. 声明+特化在头文件中,实际定义在cpp文件中。这种情况往往特化几种就是几种。

模板invoke模板函数

两个模板函数, 如果被调用的模板函数的只有声明在头文件中,定义与特化. 而模板的实际定义在cpp文件中,就会出现undefined的问题.

这是由于在头文件中进行调用模板函数过程中,找不到特化的被调用函数.
在头文件中显示特化声明被调用的函数, 这种情况比较适合针对不同的类型的特化有不同的处理方案.
或者直接将模板函数定义放到头文件中,这种比较适合所有的函数都适用一种情况.

你可能感兴趣的:(【编程语言】)