Python使用heapq实现小顶堆(TopK大)、大顶堆(BtmK小)

需求:给出N长的序列,求出TopK大的元素,使用小顶堆,heapq模块实现。
01 import heapq
02 import random
03  
04 class TopkHeap(object):
05     def __init__(self, k):
06         self.k = k
07         self.data = []
08  
09     def Push(self, elem):
10         if len(self.data) < self.k:
11             heapq.heappush(self.data, elem)
12         else:
13             topk_small = self.data[0]
14             if elem > topk_small:
15                 heapq.heapreplace(self.data, elem)
16  
17     def TopK(self):
18         return [x for x in reversed([heapq.heappop(self.data) for x in xrange(len(self.data))])]
19  
20 if __name__ == "__main__":
21     print "Hello"
22     list_rand = random.sample(xrange(1000000), 100)
23     th = TopkHeap(3)
24     for i in list_rand:
25         th.Push(i)
26     print th.TopK()
27     print sorted(list_rand, reverse=True)[0:3]

上面的用heapq就能轻松搞定。

变态的需求来了:给出N长的序列,求出BtmK小的元素,即使用大顶堆。

heapq在实现的时候,没有给出一个类似Java的Compartor函数接口或比较函数,开发者给出了原因见这里:http://code.activestate.com/lists/python-list/162387/

于是,人们想出了一些很NB的思路,见:http://stackoverflow.com/questions/14189540/python-topn-max-heap-use-heapq-or-self-implement

我来概括一种最简单的:

将push(e)改为push(-e)、pop(e)改为-pop(e)。

也就是说,在存入堆、从堆中取出的时候,都用相反数,而其他逻辑与TopK完全相同,看代码:

01 class BtmkHeap(object):
02     def __init__(self, k):
03         self.k = k
04         self.data = []
05  
06     def Push(self, elem):
07         # Reverse elem to convert to max-heap
08         elem = -elem
09         # Using heap algorighem
10         if len(self.data) < self.k:
11             heapq.heappush(self.data, elem)
12         else:
13             topk_small = self.data[0]
14             if elem > topk_small:
15                 heapq.heapreplace(self.data, elem)
16  
17     def BtmK(self):
18         return sorted([-x for x in self.data])

经过测试,是完全没有问题的,这思路太Trick了……

你可能感兴趣的:(编程小记)