sklearn.feature_extraction.DictVectorizer(sparse = True)
将映射列表转换为Numpy数组或scipy.sparse矩阵
sparse 是否转换为scipy.sparse矩阵表示,默认开启
方法
fit_transform(X,y)
应用并转化映射列表X,y为目标类型
inverse_transform(X[, dict_type])
将Numpy数组或scipy.sparse矩阵转换为映射列表
from sklearn.feature_extraction import DictVectorizer
onehot = DictVectorizer() # 如果结果不用toarray,请开启sparse=False
instances = [{'city': '北京','temperature':100},{'city': '上海','temperature':60}, {'city': '深圳','temperature':30}]
X = onehot.fit_transform(instances).toarray()
print(onehot.inverse_transform(X))
sklearn.feature_extraction.text.CountVectorizer()
(1)归一化
from sklearn.preprocessing import MinMaxScaler
min_max_scaler = preprocessing.MinMaxScaler()
min_max_scaler.fit_transform(X_train)
(2)标准化
from sklearn.preprocessing import StandardScaler
std = StandardScaler()
std.fit_transform(X_train)
(3)缺失值
from sklearn.preprocessing import Imputer
imp = Imputer(missing_values=‘NaN’, strategy=‘mean’, axis=0)
#对于编码为np.nan的缺失值,使用字符串值“NaN”
strategy补差策略,axis=0,沿列排列#
imp.fit([[1, 2], [np.nan, 3], [7, 6]])
#Imputer(axis=0, copy=True, missing_values=‘NaN’, strategy=‘mean’, verbose=0)#
X = [[np.nan, 2], [6, np.nan], [7, 6]]
print(imp.transform(X))
[[ 4. 2. ]
[ 6. 3.666…]
[ 7. 6. ]]
降维本质上是从一个维度空间映射到另一个维度空间,特征的多少别没有减少,当然在映射的过程中特征值也会相应的变化。举个例子,现在的特征是1000维,我们想要把它降到500维。降维的过程就是找个一个从1000维映射到500维的映射关系。原始数据中的1000个特征,每一个都对应着降维后的500维空间中的一个值。假设原始特征中有个特征的值是9,那么降维后对应的值可能是3。而对于特征选择来说,有很多方法:
其中过滤式的特征选择后,数据本身不变,而数据的维度减少。而嵌入式的特征选择方法也会改变数据的值,维度也改变。Embedded方式是一种自动学习的特征选择方法,后面讲到具体的方法的时候就能理解了。
特征选择主要有两个功能:
(1)减少特征数量,降维,使模型泛化能力更强,减少过拟合
(2)增强特征和特征值之间的理解
sklearn.feature_selection
去掉取值变化小的特征(删除低方差特征)
VarianceThreshold 是特征选择中的一项基本方法。它会移除所有方差不满足阈值的特征。
我们要移除那些超过80%的数据都为1或0的特征
from sklearn.feature_selection import VarianceThreshold
X = [[0, 0, 1], [0, 1, 0], [1, 0, 0], [0, 1, 1], [0, 1, 0], [0, 1, 1]]
sel = VarianceThreshold(threshold=(.8 * (1 - .8)))
sel.fit_transform(X)
array([[0, 1],
[1, 0],
[0, 0],
[1, 1],
[1, 0],
[1, 1]])