- 分布式光伏电站经济性指标优化分析
罗思付之技术屋
网络通信安全及科学技术专栏分布式
摘要结合工程经验,分析了工商业分布式光伏电站平准发电成本(LevelizedCostofEnergy,LCOE)、资本金内部收益率(InternalRateofReturn,IRR)的主要影响因素,其中平准发电成本主要受静态投资影响,资本金内部收益率主要受消纳比影响。针对上述影响因素,进一步讨论了LCOE、IRR指标优化方法与在工程项目中可选用的举措。最后,结合实际项目背景,在站址条件、组件瓦单价
- 系统架构设计师【第5章】: 软件工程基础知识 (核心总结)
数据知道
系统架构软件工程软考高级系统架构设计师软件工程基础
文章目录5.1软件工程5.1.1软件工程定义5.1.2软件过程模型5.1.3敏捷模型5.1.4统一过程模型(RUP)5.1.5软件能力成熟度模型5.2需求工程5.2.1需求获取5.2.2需求变更5.2.3需求追踪5.3系统分析与设计5.3.1结构化方法5.3.2面向对象方法5.4软件测试5.4.1测试方法5.4.2测试阶段5.5净室软件工程5.5.1理论基础5.5.2技术手段5.5.3应用与缺点5
- 使用flask快速搭建web应用
alex190824
flask前端pythonecharts
文章目录前言一、Flask是什么?二、使用步骤1.引入包2.简单的服务端应用程序3.添加用于显示折线图代码4.在templates目录下,创建用于渲染的line-simple.html页面5.完整的代码结构前端代码后端代码总结前言在数据处理分析过程中,有快速搭建数据展示的应用场景需求,此时可以使用Flask快速进行web应用环境构建。本示例演示创建web应用及显示渲染echart折线图。一、Fla
- 全自动量化交易软件是否真的可靠?使用过程中有哪些潜在风险需要注意
财云量化
python炒股自动化量化交易程序化交易全自动量化交易软件可靠性潜在风险数据准确性股票量化接口股票API接口
炒股自动化:申请官方API接口,散户也可以python炒股自动化(0),申请券商API接口python炒股自动化(1),量化交易接口区别Python炒股自动化(2):获取股票实时数据和历史数据Python炒股自动化(3):分析取回的实时数据和历史数据Python炒股自动化(4):通过接口向交易所发送订单Python炒股自动化(5):通过接口查询订单,查询账户资产股票量化,Python炒股,CSDN
- Redis 源码分析-内部数据结构 robj
笨手笨脚の
#Redisredis数据结构数据库redisObject44字节embStrraw
Redis源码分析-内部数据结构robjRedis中,一个database内的这个映射关系是用一个dict来维护的(ht[0])。dict的key固定用一种数据结构来表达就够了,即动态字符串sds。而value则比较复杂,为了在同一个dict内能够存储不同类型的value,这就需要一个通用的数据结构,这个通用的数据结构就是robj(全名redisObject)。#defineLRU_BITS24/
- JVM内存监控及调优分析
闲着无聊整些资料
JVMjvmjavalinux
一、内存监控背景在做JVM内存分析前,需要堆JVM内存及垃圾回收算法和垃圾回收器有一定了解,具体可以参考我之前的一篇文章:常见的垃圾回收器及垃圾回收算法1.1、为什么要做内存监控我们在做开发的时候不可避免的会遇到一些问题,诸如下面这些问题:生产环境发生了内存溢出该如何处理?生产环境应该给服务器分配多少内存合适?如何对垃圾回收器的性能进行调优?生产环境CPU负载飙高该如何处理?生产环境出现死锁该如何
- 垃圾回收机制是什么 ?JVM 核心结构?
胡图蛋.
jvm
垃圾回收机制是什么jvm的垃圾回收机制是GC(GarbageCollection),也叫垃圾收集器。GC基本原理:将内存中不再被使用的对象进行回收;GC中用于回收的方法称为收集器,由于GC需要消耗一些资源和时间,Java在对对象的生命周期特征进行分析后,按照新生代、老年代的方式来对对象进行收集,以尽可能的缩短GC对应用造成的暂停。不同的对象引用类型,GC会采用不同的方法进行回收,JVM对象的引用分
- 数据标注质量对AI模型质量的影响分析
自由鬼
行业发展IT应用探讨人工智能机器学习深度学习AI
上、数据标注质量与AI模型的质量关系数据标注是AI最基础的工作,数据标注的质量决定了AI质量,影响数据标注质量的是数据标注的规则。1、数据标注是AI最基础的工作:数据标注是构建高质量AI模型的基石:数据标注尤其是在监督学习范式下,是AI领域最基础、最关键的工作之一。没有高质量的标注数据,就如同建造高楼大厦没有坚实的地基,AI模型就无法有效地学习和训练,最终的AI质量也就无从谈起。训练数据是AI模型
- 【JVM】性能监控与调优概述篇
白晨并不是很能熬夜
JVMjvm后端面试java经验分享求职招聘
大家好,我是白晨,一个不是很能熬夜,但是也想日更的人✈。如果喜欢这篇文章,点个赞,关注一下白晨吧!你的支持就是我最大的动力!文章目录JVM性能监控与调优概述篇背景说明生产环境中的问题为什么要调优不同阶段的考虑调优概述监控的依据调优的大方向性能优化的步骤第一步(发现问题):性能监控第二步(排查问题):性能分析第三步(解决问题):性能调优性能评价/测试指标停顿时间(或响应时间)吞吐量并发数内存站用相互
- 信息检索系统评估指标的层级分析:从单点精确度到整体性能度量
人工智能深度学习llm检索系统
在构建搜索引擎系统时,有效的评估机制是保证系统质量的关键环节。当用户输入查询词如"machinelearningtutorialspython",系统返回结果列表后,如何客观评估这些结果的相关性和有效性?这正是信息检索评估指标的核心价值所在。分析用户与搜索引擎的交互模式,我们可以观察到以下行为特征:用户主要关注结果列表的前几项对顶部结果的关注度显著高于底部结果用户基于多次搜索体验形成对搜索系统整体
- 基于大模型的单纯性孔源性视网膜脱离预测及治疗方案研究报告
LCG元
围术期危险因子预测模型研究人工智能
目录一、引言1.1研究背景与目的1.2国内外研究现状1.3研究方法与创新点二、单纯性孔源性视网膜脱离概述2.1发病机制2.2高危因素2.3临床表现与诊断方法三、大模型在术前预测中的应用3.1模型选择与数据收集3.2术前风险预测指标3.3预测结果分析与验证四、基于预测结果的手术方案制定4.1手术原则与目标4.2不同预测结果下的手术方式选择4.3手术案例分析五、麻醉方案的确定5.1麻醉方式的选择依据5
- 哨兵2号遥感影像解析全流程:步骤、算法与AI应用详解
zhz5214
AIGIS人工智能遥感aisentinel智能体
遥感影像解析是农业监测、环境评估等领域的重要技术手段。哨兵2号(Sentinel-2)凭借其高分辨率多光谱数据,成为遥感分析的热门数据源。本文将系统梳理哨兵2号影像解析的核心步骤、适用算法与软件工具,并探讨AI技术在该领域的创新应用。一、哨兵2号影像解析核心步骤1.数据获取与预处理数据下载哨兵2号数据可通过官方平台[CopernicusOpenAccessHub](https://scihub.c
- 大数据学习(67)- Flume、Sqoop、Kafka、DataX对比
viperrrrrrr
大数据学习flumekafkasqoopdatax
大数据学习系列专栏:哲学语录:用力所能及,改变世界。如果觉得博主的文章还不错的话,请点赞+收藏⭐️+留言支持一下博主哦工具主要作用数据流向实时性数据源/目标应用场景Flume实时日志采集与传输从数据源到存储系统实时日志文件、网络流量等→HDFS、HBase、Kafka等日志收集、实时监控、实时分析Sqoop关系型数据库与Hadoop间数据同步关系型数据库→Hadoop生态系统(HDFS、Hive、
- 数据分析大数据面试题大杂烩01
爱学习的菜鸟罢了
大数据flink大数据面试hivehadoopkafka
互联网:通过埋点实时计算用户浏览频次用优惠券等措施吸引用户,通过历史信息用非智能学习的title方式构造用户画像(抖音,京东)电信,银行统计营收和针对用户的个人画像:处理大量非实时数据政府:健康码,扫码之后确诊,找出与确诊对象有关联的人订单订单表(除商品以外所有信息),商品详情表,通过搜集用户title进行定制化推荐点击流数据通过埋点进行用户点击行为分析FLINK一般用来做实时SPARK一般用来做
- 数学建模之数学模型-3:动态规划
^ω^宇博
数学模型数学建模动态规划算法
文章目录动态规划基本概念阶段状态决策策略状态转移方程指标函数最优指标函数动态规划的求解前向算法后向算法二者比较应用案例一种中文分词的动态规划模型摘要引言动态规划的分词模型问题的数学描述消除状态的后效性选择优化条件算法描述和计算实例算法的效率分析和评价结束语参考文献动态规划基本概念一个多阶段决策过程最优化问题的动态规划模型包括以下666个要素:以下是对动态规划中阶段、状态、决策、策略、状态转移方程、
- Python 爬虫实战:艺术品市场趋势分析与交易平台数据抓取
西攻城狮北
python爬虫开发语言
一、引言在当今数字化时代,艺术品市场正经历着前所未有的变革。随着互联网技术的飞速发展,越来越多的艺术品交易转移到了线上平台,这为我们提供了海量的数据资源。通过Python爬虫技术,我们可以抓取艺术品交易平台上的数据,进而分析艺术品市场的趋势,为投资者、收藏家以及艺术爱好者提供有价值的参考。本文将带领读者深入探索Python爬虫在艺术品市场的应用。从爬虫的基本原理到实际代码实现,再到数据的清洗、分析
- 海量数据查询加速:Presto、Trino、Apache Arrow
晴天彩虹雨
apache大数据hive数据仓库
1.引言在大数据分析场景下,查询速度往往是影响业务决策效率的关键因素。随着数据量的增长,传统的行存储数据库难以满足低延迟的查询需求,因此,基于列式存储、向量化计算等技术的查询引擎应运而生。本篇文章将深入探讨Presto、Trino、ApacheArrow三种主流的查询优化工具,剖析其核心机制,并通过案例分析展示它们在实际业务中的应用。2.Presto:分布式SQL查询引擎2.1Presto介绍Pr
- UNet 改进:添加Transformer注意力机制增强捕捉长距离依赖关系的能力
听风吹等浪起
AI改进系列transformer深度学习人工智能
目录1.Transformer注意力机制2.Unet改进3.代码1.Transformer注意力机制TransformerBlock是Transformer模型架构的基本组件,广泛应用于机器翻译、文本摘要和情感分析等自然语言处理任务。TransformerBlock是一个由两个子组件组成的构建块:多头注意力机制和前馈神经网络。这两个组件协同工作,处理和转换输入序列。多头注意力机制负责从输入序列中捕
- Spring框架快速入门手册
Uncoverlove
springmysqlmybatisjava后端
说明:本文试图将Spring框架的知识体系进行整合分析,并冠以自己的理解,为初学Spring框架的同学,提供一个快速入门手册。同时呢,也是为了总结一下工作学习中遇到的问题和经验,以免发生遗漏!文末将附上Spring的学习资料,以供大家学习~(申明一下:纯小白一枚,由于工作需要自学的Spring,或许某些理解会出现偏差,烦请各位斧正!不慎感激!!)快速入门推荐阅读书籍(欢迎补充):1、《JavaEE
- 【MyBatis-Plus 分页插件】深入分析和实战解析
Yan.love
mybatisjava后端
分页是Web应用开发中的高频需求,而在MyBatis的生态中,MyBatis-Plus分页插件PaginationInnerInterceptor和MyBatis的PageHelper是两种常见的实现方案。本文将通过工作机制、使用方法和细节剖析,带你循序渐进地掌握这两种方式,并为你的项目选择提供指导。一、什么是分页?分页的核心目标是减少数据传输量和前端渲染压力。通过限制每次查询的结果数量,分页能够
- 阿里巴巴发布 R1-Omni:首个基于 RLVR 的全模态大语言模型,用于情感识别
新加坡内哥谈技术
语言模型人工智能自然语言处理
每周跟踪AI热点新闻动向和震撼发展想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行!订阅:https://rengongzhineng.io/情感识别一直是AI领域的难题,尤其是视觉与音频信号的融合。单独依赖视觉或音频的模型,往往
- Podman 运行redis 报错
one one day
podmanredis数据库
Podman运行redis报错一、报错内容find:'.':Permissiondeniedchown:changingownershipof'.':Permissiondenied二、问题分析SELinux模式SELinux(Security-EnhancedLinux)是一种安全模块,旨在通过强制访问控制(MAC)来增强Linux系统的安全性。SELinux具有三种工作模式,每种模式提供不同的
- 安全中心建设关键技术之机器学习
sinfoyou
安全机器学习人工智能
1.1.1功能要求针对目前广为流行的网银、掌上银行撞库行为,需要围绕撞库防护建立针对性的发现、预警、拦截体系。在本课题在大量数据中自动分析获得规律,并利用规律对未知数据进行预测。通过机器学习重点解决目前无法在识别撞库攻击源IP地址的基础上,进一步识别出被撞库成功的账号。由于机器学习算法需要从数据中自动分析获得规律,所以必须要有历史数据。在针对撞库攻击行为分析的场景中,首先需要获取手机银行和网上银行
- Fastjson反序列化漏洞分析:挖掘思维与研究方法
恩师小迪
json安全网络
致谢首先,感谢我的小迪老师的指导与启发,让我有机会深入学习这个经典漏洞案例理解前辈们的安全研究思路。引言当分析一个广泛使用的库时,我们应该思考:为什么一个JSON解析库需要这么多特殊功能?大多数JSON库只做一件事:把JSON字符串转成对象,或者反过来。但Fastjson不同,它实现了更多功能。作为学习者,我们需要理解那些发现Fastjson漏洞的前辈们的研究方法。下面我们一起分析这个经典漏洞的发
- 基础知识《Redis解析》
Hum8le
redis数据库缓存安全web安全
Redis详细解析与介绍Redis(RemoteDictionaryServer)是一个开源的高性能键值对(Key-Value)数据库,支持多种数据结构(如字符串、哈希、列表、集合等),广泛应用于缓存、消息队列、实时数据分析等场景。核心特点:内存存储:数据主要存储在内存中,读写性能极高(10万+/秒QPS)。持久化支持:支持RDB(快照)和AOF(追加日志)两种持久化方式。多数据结构:支持字符串、
- 審單人員效率 PPP 模型
chenchihwen
网络sql数据库
审单人员效率PPP模型的目的审单人员效率PPP模型的主要目的是通过系统化的计算和分析,评估审单人员的工作效率,并为管理决策提供数据支持。具体包括以下几个方面:1.量化审单人员的工作效率目的:通过审单数量、工时、折算率等指标,量化审单人员的工作效率。实现方式:计算每个审单人员的审单量(vol_o)。根据标准工时表(t_dash_ppp_checker_std_v)折算审单数量(vol_c)。结合有效
- 使用 Excel 实现绩效看板的自动化
chenchihwen
自动化运维
引言在日常工作中,团队的绩效监控和管理是确保项目顺利进行的重要环节。然而,面临着以下问题:数据分散:系统中的数据难以汇总,缺乏一个宏观的团队执行情况视图。看板缺失:系统本身可能无法提供合适的Dashboard,导致数据分析困难。手动操作繁琐:数据采集、汇总和分析过程繁琐且耗时。本文将介绍如何利用免费的软件和工具(如Python、MySQL、Excel等)实现绩效看板的自动化。通过邮件自动推送和接收
- Go语言分布式ID生成策略优选:UUID、Snowflake、XID、ObjectID、Krand性能对比评测
zhuyasen
golang分布式
在高并发应用场景下,如订单系统、分布式数据库主键、消息队列等,分布式ID的生成至关重要。本文将基于Go语言,对多种分布式ID生成方案进行基准测试(Benchmark),并分析其性能及适用场景,帮助开发者选择最优方案。常见分布式ID生成方案在Go语言生态中,常见的分布式ID生成方案包括:XID(github.com/rs/xid):基于MongoDBObjectID改进的方案,时间排序、唯一性强、无
- Anthropic 的模型
调皮的芋头
深度学习神经网络机器学习人工智能
Anthropic的模型(特别是Claude系列)之所以在性能和推理能力上表现强劲,可以从技术设计、研究理念、训练方法以及应用优化等多个方面进行详细分析。以下是基于当前信息(截至2025年3月13日)和行业趋势的深入剖析:1.技术设计与安全导向Anthropic由前OpenAI研究员创立,核心理念是将安全性、可解释性和可控性融入模型设计。这种设计哲学直接影响了Claude模型的性能:Constit
- 【儿童自信的生物学机制】
调皮的芋头
机器学习数据库
在继续深入探讨儿童自信的生物学机制时,我们需要将视角拓展至神经递质系统、突触动态平衡以及跨脑区网络整合等更深层的神经发育规律。以下从三个新颖维度展开分析:一、神经递质系统的发育失衡现象儿童自信水平随年龄增长呈现U型曲线变化的现象,确实蕴含着复杂的生物进化机制与神经发育规律。从进化生物学视角来看,人类幼态持续特征决定了早期自信的生存价值:新生儿通过哭闹表达需求(平均每天1.5小时发声),这种原始自信
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓