随机森林回归:
class sklearn.ensemble.
RandomForestRegressor
(n_estimators=10, criterion=’mse’, max_depth=None,min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=’auto’, max_leaf_nodes=None,min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=1, random_state=None,verbose=0, warm_start=False)
随机森林是一种目标估计,通过对数据集上的部分样本形成一个分类决策树,并使用averaging去提高预测准确率和控制过拟合发生。
注:http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
用法:
>>>from sklearn.ensemble import RandomForestRegressor
>>>data=[[0,0,0],[1,1,1],[2,2,2]]
>>>target=[0,1,2]
>>>rfr=RandomForestRegressor()
>>>rfr.fit(data,target) #训练数据
>>>print(rfr.predict([[1,1,1]])) #预测数据
[1.]
>>>print(rfr.predict([[1,1,1],[2,2,2]]))
[0.7 1.8]