numpy ndarray 取出满足特定条件的某些行

在进行物体检测的ground truth boxes annotations包围框坐标数据整理时,需要实现这样的功能:

numpy里面,对于N*4的数组,要实现对于每一行,如果第3列和第1列数值相等或者第2列和第0列数值相等,就删除这一行,要返回保留下来的numpy数组 shape M*4

对于numpy数组的操作要尽量避免for循环,因为numpy数组支持布尔索引。

import numpy as np

a1=np.array(
    [1,0,1,5]
)
a2=np.array(
    [0,8,5,8]
)
center=np.random.randint(0,10,size=(3,4))
# print(a1.shape,a2.shape,center.shape)
b=np.vstack((a1,center,a2))
'''
numpy vstack 所输入的参数必须是list或者tuple的iterable对象,在竖直方向上进行数组拼接
其中list或者tuple中的每个元素是numpy.ndarray类型
它们必须具有相同的列数,拼接完成后行数增加

numpy hstack 在水平方向上进行数组拼接
进行拼接的数组必须具有相同的行数,拼接完成后列数增加
'''
print(b.shape,b)
out=b[b[:,3]!=b[:,1]]
out2=out[out[:,2]!=out[:,0]]
print(out2.shape,out2)
'''
(5, 4) 
[[1 0 1 5]
 [6 9 9 1]
 [9 1 6 5]
 [2 8 8 1]
 [0 8 5 8]]
(3, 4) 
[[6 9 9 1]
 [9 1 6 5]
 [2 8 8 1]]
'''
b1=a1.reshape(-1,1)
b2=a2.reshape(-1,1)
before_list=[]
before_list.append(b1)
before_list.append(center.reshape(4,3))
before_list.append(b2)
out3=np.hstack(before_list)
print(out3.shape)#(4, 5)

 

 

你可能感兴趣的:(numpy)