fourier feature networks

paper: Fourier Features Let Networks LearnHigh Frequency Functions in Low Dimensional Domains
code:官方
tf2
torch

看了下torch的 稍微加了一点注释

Original Mapping

import numpy as np
import matplotlib.pyplot as plt
from tqdm.notebook import tqdm as tqdm
import os, imageio

import torch
import torch.nn as nn
import torch.nn.functional as F
import math

# Download image, take a square crop from the center
image_url = 'https://live.staticflickr.com/7492/15677707699_d9d67acf9d_b.jpg'
img = imageio.imread(image_url)[..., :3] / 255.
c = [img.shape[0]//2, img.shape[1]//2]## 图片中心点
r = 256
img = img[c[0]-r:c[0]+r, c[1]-r:c[1]+r]#裁切到512*512*3
plt.imshow(img)
plt.show()

# Create input pixel coordinates in the unit square
coords = np.linspace(0, 1, img.shape[0], endpoint=False)
x_test = np.stack(np.meshgrid(coords, coords), -1)##(512,512,0)是X轴位置,(512,512,1)是y轴位置
test_data = [x_test, img]
train_data = [x_test[::2,::2], img[::2,::2]]## 按照步长2 在第一维 第二维抽取成256*256*2的索引和图片
class MLP(nn.Module):
    def __init__(self,depth=4,mapping_size=512,hidden_size=256):
        super().__init__()
        layers = []
        layers.append(nn.Linear(mapping_size,hidden_size))
        layers.append(nn.ReLU(inplace=True))
        for _ in range(depth-2):
            layers.append(nn.Linear(hidden_size,hidden_size))
            layers.append(nn.ReLU(inplace=True))
        layers.append(nn.Linear(hidden_size,3))
        self.layers = nn.Sequential(*layers)
    def forward(self,x):
        return torch.sigmoid(self.layers(x))
xb,yb = torch.tensor(train_data[0]).reshape(-1,2),torch.tensor(train_data[1]).reshape(-1,3)
x_test,y_test = torch.tensor(test_data[0]).reshape(-1,2),torch.tensor(test_data[1]).reshape(-1,3)
xb,yb,x_test,y_test = xb.float().cuda(),yb.float().cuda(),x_test.float(),y_test.float()

def map_x(x,B): # x是index B是用来初始化的 如果
    xp = torch.matmul(2*math.pi*x,B)
    return torch.cat([torch.sin(xp),torch.cos(xp)],dim=-1)

model = MLP().cuda()# fc-relu-fc-relu-fc-relu-fc
opt = torch.optim.Adam(model.parameters(),lr=1e-4)
loss = nn.MSELoss()
B = torch.randn(2,256).cuda() * 10
xt = map_x(xb,B)
for i in tqdm(range(2000)):
    ypred = model(xt)
    l = loss(ypred,yb)
    opt.zero_grad()
    l.backward()
    opt.step()        

Mapping with only sin ⁡ ( 2 π B v ) \sin(2 \pi Bv) sin(2πBv)

def map_x(x,B):
    xp = torch.matmul(2*math.pi*x,B)
    return torch.sin(xp)

model = MLP(mapping_size=256).cuda()
opt = torch.optim.Adam(model.parameters(),lr=1e-4)
loss = nn.MSELoss()
B = torch.randn(2,256).cuda() * 10
xt = map_x(xb,B)
for i in tqdm(range(2000)):
    ypred = model(xt)
    l = loss(ypred,yb)
    opt.zero_grad()
    l.backward()
    opt.step()
# Preds
model.cpu().eval()
with torch.no_grad():
    ypreds = model(map_x(x_test,B.cpu()))
    ypreds = ypreds.reshape(512,512,3)
plt.imshow(ypreds)
plt.hist(xt[:,0].cpu())

Only Gaussian

def map_x(x,B):
    xp = torch.matmul(x,B)
    return xp

model = MLP(mapping_size=512).cuda()
opt = torch.optim.Adam(model.parameters(),lr=1e-4)
loss = nn.MSELoss()
B = torch.randn(2,512).cuda() * 10
xt = map_x(xb,B)
for i in tqdm(range(2000)):
    ypred = model(xt)
    l = loss(ypred,yb)
    opt.zero_grad()
    l.backward()
    opt.step()
# Preds
model.cpu().eval()
with torch.no_grad():
    ypreds = model(map_x(x_test,B.cpu()))
    ypreds = ypreds.reshape(512,512,3)
plt.imshow(ypreds)
plt.hist(xt[:,0].cpu())

你可能感兴趣的:(deep,learning,深度学习,pytorch,神经网络)