- 李宏毅机器学习笔记——反向传播算法
小陈phd
机器学习机器学习算法神经网络
反向传播算法反向传播(Backpropagation)是一种用于训练人工神经网络的算法,它通过计算损失函数相对于网络中每个参数的梯度来更新这些参数,从而最小化损失函数。反向传播是深度学习中最重要的算法之一,通常与梯度下降等优化算法结合使用。反向传播的基本原理反向传播的核心思想是利用链式法则(ChainRule)来高效地计算损失函数相对于每个参数的梯度。以下是反向传播的基本步骤:前向传播(Forwa
- Python机器学习笔记:CART算法实战
战争热诚
完整代码及其数据,请移步小编的GitHub传送门:请点击我如果点击有误:https://github.com/LeBron-Jian/MachineLearningNote前言在python机器学习笔记:深入学习决策树算法原理一文中我们提到了决策树里的ID3算法,C4.5算法,并且大概的了
- 机器学习笔记
rl染离
机器学习笔记人工智能
什么是机器学习:机器学习是一门多学科交叉专业,涵盖概率论知识,统计学知识,近似理论知识和复杂算法知识,使用计算机作为工具并致力于真实实时的模拟人类学习方式,并将现有内容进行知识结构划分来有效提高学习效率。机器学习有下面几种定义:(1)机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能。(2)机器学习是对能通过经验自动改进的计算机算法的研究。(3)
- 机器学习笔记(KNN算法)
空木幻城
机器学习python机器学习算法
情景分析现在一个二维平面上有众多点(x1,y1),(x2,y2)...(xn,yn)(x_1,y_1),(x_2,y_2)...(x_n,y_n)(x1,y1),(x2,y2)...(xn,yn),我也知道它们所属哪个类别,现在给出一个点(x,y)(x,y)(x,y),问这个点是属于哪个类的。这是一个典型的分类问题重要概念相邻点的个数K相邻点的个数Kknn中最重要的概念就是这个了,也是唯一需要理解
- 【机器学习笔记】 9 集成学习
RIKI_1
机器学习机器学习笔记集成学习
集成学习方法概述Bagging从训练集中进行子抽样组成每个基模型所需要的子训练集,对所有基模型预测的结果进行综合产生最终的预测结果:假设一个班级每个人的成绩都不太好,每个人单独做的考卷分数都不高,但每个人都把自己会做的部分做了,把所有考卷综合起来得到成绩就会比一个人做的高Boosting训练过程为阶梯状,基模型按次序一一进行训练(实现上可以做到并行),基模型的训练集按照某种策略每次都进行一定的转化
- 吴恩达机器学习全课程笔记第二篇
亿维数组
MachineLearning机器学习笔记人工智能学习
目录前言P31-P33logistics(逻辑)回归决策边界P34-P36逻辑回归的代价函数梯度下降的实现P37-P41过拟合问题正则化代价函数正则化线性回归正则化logistics回归前言这是吴恩达机器学习笔记的第二篇,第一篇笔记请见:吴恩达机器学习全课程笔记第一篇完整的课程链接如下:吴恩达机器学习教程(bilibili)推荐网站:scikit-learn中文社区吴恩达机器学习学习资料(gith
- 【机器学习笔记】7 KNN算法
RIKI_1
机器学习机器学习笔记算法
距离度量欧氏距离(Euclideandistance)欧几里得度量(EuclideanMetric)(也称欧氏距离)是一个通常采用的距离定义,指在维空间中两个点之间的真实距离,或者向量的自然长度(即该点到原点的距离)。在二维和三维空间中的欧氏距离就是两点之间的实际距离。曼哈顿距离(Manhattandistance)想象你在城市道路里,要从一个十字路口开车到另外一个十字路口,驾驶距离是两点间的直线
- 【机器学习笔记】14 关联规则
RIKI_1
机器学习机器学习笔记人工智能
关联规则概述关联规则(AssociationRules)反映一个事物与其他事物之间的相互依存性和关联性。如果两个或者多个事物之间存在一定的关联关系,那么,其中一个事物就能够通过其他事物预测到。关联规则可以看作是一种IF-THEN关系。假设商品A被客户购买,那么在相同的交易ID下,商品B也被客户挑选的机会就被发现了。有没有发生过这样的事:你出去买东西,结果却买了比你计划的多得多的东西?这是一种被称为
- 【机器学习笔记】13 降维
RIKI_1
机器学习机器学习笔记人工智能
降维概述维数灾难维数灾难(CurseofDimensionality):通常是指在涉及到向量的计算的问题中,随着维数的增加,计算量呈指数倍增长的一种现象。在很多机器学习问题中,训练集中的每条数据经常伴随着上千、甚至上万个特征。要处理这所有的特征的话,不仅会让训练非常缓慢,还会极大增加搜寻良好解决方案的困难。这个问题就是我们常说的维数灾难。维数灾难涉及数字分析、抽样、组合、机器学习、数据挖掘和数据库
- 【机器学习笔记】8 决策树
RIKI_1
机器学习机器学习笔记决策树
决策树原理决策树是从训练数据中学习得出一个树状结构的模型。决策树属于判别模型。决策树是一种树状结构,通过做出一系列决策(选择)来对数据进行划分,这类似于针对一系列问题进行选择。决策树的决策过程就是从根节点开始,测试待分类项中对应的特征属性,并按照其值选择输出分支,直到叶子节点,将叶子节点的存放的类别作为决策结果。以下小美相亲的例子就是决策树决策树算法是一种归纳分类算法,它通过对训练集的学习,挖掘出
- 【机器学习笔记】 15 机器学习项目流程
RIKI_1
机器学习机器学习笔记人工智能
机器学习的一般步骤数据清洗数据清洗是指发现并纠正数据文件中可识别的错误的最后一道程序,包括检查数据一致性,处理无效值和缺失值等。与问卷审核不同,录入后的数据清理一般是由计算机而不是人工完成。探索性数据分析(EDA探索性数据分析(EDA)是一个开放式流程,我们制作绘图并计算统计数据,以便探索我们的数据。目的是找到异常,模式,趋势或关系。这些可能是有趣的(例如,找到两个变量之间的相关性),或者它们可用
- 【机器学习笔记】5 机器学习实践
RIKI_1
机器学习机器学习笔记人工智能
数据集划分子集划分训练集(TrainingSet):帮助我们训练模型,简单的说就是通过训练集的数据让我们确定拟合曲线的参数。验证集(ValidationSet):也叫做开发集(DevSet),用来做模型选择(modelselection),即做模型的最终优化及确定的,用来辅助我们的模型的构建,即训练超参数,可选;测试集(TestSet):为了测试已经训练好的模型的精确度。三者划分:训练集、验证集、
- 【机器学习笔记】11 支持向量机
RIKI_1
机器学习机器学习笔记支持向量机
支持向量机(SupportVectorMachine,SVM)支持向量机是一类按监督学习(supervisedlearning)方式对数据进行二元分类的广义线性分类器(generalizedlinearclassifier),其决策边界是对学习样本求解的最大边距超平面(maximum-marginhyperplane)。与逻辑回归和神经网络相比,支持向量机,在学习复杂的非线性方程时提供了一种更为清
- 【机器学习笔记】12 聚类
RIKI_1
机器学习机器学习笔记聚类
无监督学习概述监督学习在一个典型的监督学习中,训练集有标签,我们的目标是找到能够区分正样本和负样本的决策边界,需要据此拟合一个假设函数。无监督学习与此不同的是,在无监督学习中,我们的数据没有附带任何标签,无监督学习主要分为聚类、降维、关联规则、推荐系统等方面。主要的无监督学习方法聚类(Clustering)如何将教室里的学生按爱好、身高划分为5类?降维(DimensionalityReductio
- 【机器学习笔记】4 朴素贝叶斯
RIKI_1
机器学习机器学习笔记人工智能
贝叶斯方法贝叶斯分类贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。朴素贝叶斯分类是这一类算法中最简单的较为常见的算法。先验概率根据以往经验和分析得到的概率。我们用()来代表在没有训练数据前假设拥有的初始概率。后验概率根据已经发生的事件来分析得到的概率。以(|)代表假设成立的情下观察到数据的概率,因为它反映了在看到训练数据后成立的置信度。联合概率是指在多元的概率分
- 【机器学习笔记】 6 机器学习库Scikit-learn
RIKI_1
机器学习机器学习笔记scikit-learn
Scikit-learn概述Scikit-learn是基于NumPy、SciPy和Matplotlib的开源Python机器学习包,它封装了一系列数据预处理、机器学习算法、模型选择等工具,是数据分析师首选的机器学习工具包。自2007年发布以来,scikit-learn已经成为Python重要的机器学习库了,scikit-learn简称sklearn,支持包括分类,回归,降维和聚类四大机器学习算法。
- 【机器学习笔记】10 人工神经网络
RIKI_1
机器学习机器学习笔记人工智能
人工神经网络发展史1943年,心理学家McCulloch和逻辑学家Pitts建立神经网络的数学模型,MP模型每个神经元都可以抽象为一个圆圈,每个圆圈都附带特定的函数称之为激活函数,每两个神经元之间的连接的大小的加权值即为权重。1960年代,人工网络得到了进一步地发展感知机和自适应线性元件等被提出。M.Minsky仔细分析了以感知机为代表的神经网络的局限性,指出了感知机不能解决非线性问题,这极大影响
- 【机器学习笔记】3 逻辑回归
RIKI_1
机器学习机器学习笔记逻辑回归
分类问题分类问题监督学习最主要的类型,主要特征是标签离散,逻辑回归是解决分类问题的常见算法,输入变量可以是离散的也可以是连续的二分类先从用蓝色圆形数据定义为类型1,其余数据为类型2;只需要分类1次,步骤:①->②多分类问题先定义其中一类为类型1(正类),其余数据为负类(rest);接下来去掉类型1数据,剩余部分再次进行二分类,分成类型2和负类;如果有类,那就需要分类-1次,步骤:①->②->③->
- 【百面机器学习笔记】模型评估
葡萄肉多
模型评估指标准确率(Accuracy)准确率是指分类正确的样本占总样本个数的比例。Accuracy=n(correct)/n(total)当负样本占99%时,分类器把所有样本都预测为负样本也可以获得99%的准确率。所以,当不同类别的样本比例非常不均衡时,占比大的类别往往成为影响准确率的最主要因素。精确率(Precision)&召回率(Recall)精确率是指分类正确的正样本个数占分类器判定为正样本
- 李宏毅机器学习笔记 2.回归
Simone Zeng
机器学习机器学习
最近在跟着Datawhale组队学习打卡,学习李宏毅的机器学习/深度学习的课程。课程视频:https://www.bilibili.com/video/BV1Ht411g7Ef开源内容:https://github.com/datawhalechina/leeml-notes本篇文章对应视频中的P3。另外,最近我也在学习邱锡鹏教授的《神经网络与深度学习》,会补充书上的一点内容。通过上一次课1.机器
- 【机器学习笔记】基于实例的学习
住在天上的云
机器学习机器学习笔记学习KNN实例学习
基于实例的学习文章目录基于实例的学习1基本概念与最近邻方法2K-近邻(KNN)3距离加权KNN4基于实例/记忆的学习器5局部加权回归5多种回归方式对比6懒惰学习与贪婪学习动机:人们通过记忆和行动来推理学习。1基本概念与最近邻方法名词概念参数化设定一个特定的函数形式优点:简单,容易估计和解释可能存在很大的偏置:实际的数据分布可能不遵循假设的分布非参数化:分布或密度的估计是数据驱动的(data-dri
- fast.ai 机器学习笔记(一)
绝不原创的飞龙
人工智能人工智能python
机器学习1:第1课原文:medium.com/@hiromi_suenaga/machine-learning-1-lesson-1-84a1dc2b5236译者:飞龙协议:CCBY-NC-SA4.0来自机器学习课程的个人笔记。随着我继续复习课程以“真正”理解它,这些笔记将继续更新和改进。非常感谢Jeremy和Rachel给了我这个学习的机会。简要课程大纲根据时间和班级兴趣,我们将涵盖类似以下内容
- fast.ai 机器学习笔记(四)
绝不原创的飞龙
人工智能人工智能python
机器学习1:第11课原文:medium.com/@hiromi_suenaga/machine-learning-1-lesson-11-7564c3c18bbb译者:飞龙协议:CCBY-NC-SA4.0来自机器学习课程的个人笔记。随着我继续复习课程以“真正”理解它,这些笔记将继续更新和改进。非常感谢Jeremy和Rachel给了我这个学习的机会。使用SGD优化多层函数的回顾[0:00]这个想法是
- 机器学习笔记(3):误差、复杂度曲线、学习曲线等
链原力
本文来自之前在Udacity上自学机器学习的系列笔记。这是第3篇,介绍了模型的误差类型、误差的由来、找到模型适合的参数、以及避免欠拟合和过拟合的方法。1.诊断误差1.1.误差类型我们的预测或者分类的结果与实际结果相比较,会存在一定的误差,误差越小,表示结果越好。一般有两种误差来源,欠拟合和过拟合。将问题看得过于简单导致了欠拟合(Underfitting),将问题看得过于复杂导致了过拟合(Overf
- fast.ai 机器学习笔记(三)
绝不原创的飞龙
人工智能人工智能python
机器学习1:第8课原文:medium.com/@hiromi_suenaga/machine-learning-1-lesson-8-fa1a87064a53译者:飞龙协议:CCBY-NC-SA4.0来自机器学习课程的个人笔记。随着我继续复习课程以“真正”理解它,这些笔记将继续更新和改进。非常感谢Jeremy和Rachel给了我这个学习的机会。广义定义的神经网络视频/笔记本正如我们在上一课结束时讨
- fast.ai 机器学习笔记(二)
绝不原创的飞龙
人工智能人工智能python
机器学习1:第5课原文:medium.com/@hiromi_suenaga/machine-learning-1-lesson-5-df45f0c99618译者:飞龙协议:CCBY-NC-SA4.0来自机器学习课程的个人笔记。随着我继续复习课程以“真正”理解它,这些笔记将继续更新和改进。非常感谢Jeremy和Rachel给了我这个学习的机会。视频复习测试集,训练集,验证集和OOB我们有一个数据集
- 政安晨:示例演绎机器学习中(深度学习)神经网络的数学基础——快速理解核心概念(一){两篇文章讲清楚}
政安晨
政安晨的机器学习笔记神经网络人工智能深度学习Python数学基础机器学习Conda
进入人工智能领域免不了与算法打交道,算法依托数学基础,很多小伙伴可能新生畏惧,不用怕,算法没那么难,也没那么玄乎,未来人工智能时代说不得人人都要了解算法、应用算法。本文试图以一篇文章,用程序演绎的方式给大家把这里面的数学基础先讲清楚,以便于咱们未来深入,呵呵。第一次接触机器学习的小伙伴,环境搭建参考我的这篇文章(只参考这个里面关于环境搭建的部分就可以):政安晨的机器学习笔记——跟着演练快速理解Te
- 【机器学习笔记】贝叶斯学习
住在天上的云
机器学习机器学习笔记学习贝叶斯学习人工智能
贝叶斯学习文章目录贝叶斯学习1贝叶斯学习背景2贝叶斯定理3最大后验假设MAP(MaxAPosterior)4极大似然假设ML(MaximumLikelihood)5朴素贝叶斯NB6最小描述长度MDL1贝叶斯学习背景试图发现两件事情的关系(因果关系,先决条件&结论)。执果索因:肺炎→肺癌?不好确定,换成确诊肺癌得肺炎的概率2贝叶斯定理贝叶斯定理是一种用先验慨率来推断后验慨率的公式,它可以表示为:P(
- 【机器学习笔记】决策树
住在天上的云
机器学习机器学习笔记决策树
决策树文章目录决策树1决策树学习基础2经典决策树算法3过拟合问题1决策树学习基础适用决策树学习的经典目标问题带有非数值特征的分类问题离散特征没有相似度概念特征无序例子:SkyTempHumidWindWaterForecastEnjoySunnyWarmNormalStrongWarmSameYesSunnyWarmHighStrongWarmSameYesRainyColdHighStrongW
- 【机器学习笔记】回归算法
住在天上的云
机器学习笔记回归线性回归人工智能
回归算法文章目录回归算法1线性回归2损失函数3多元线性回归4线性回归的相关系数1线性回归回归分析(Regression)回归分析是描述变量间关系的一种统计分析方法例:在线教育场景因变量Y:在线学习课程满意度自变量X:平台交互性、教学资源、课程设计预测性的建模技术,通常用于预测分析,预测的结果多为连续值(也可为离散值,二值)线性回归(Linearregression)因变量和自变量之间是线性关系,就
- Java开发中,spring mvc 的线程怎么调用?
小麦麦子
springmvc
今天逛知乎,看到最近很多人都在问spring mvc 的线程http://www.maiziedu.com/course/java/ 的启动问题,觉得挺有意思的,那哥们儿问的也听仔细,下面的回答也很详尽,分享出来,希望遇对遇到类似问题的Java开发程序猿有所帮助。
问题:
在用spring mvc架构的网站上,设一线程在虚拟机启动时运行,线程里有一全局
- maven依赖范围
bitcarter
maven
1.test 测试的时候才会依赖,编译和打包不依赖,如junit不被打包
2.compile 只有编译和打包时才会依赖
3.provided 编译和测试的时候依赖,打包不依赖,如:tomcat的一些公用jar包
4.runtime 运行时依赖,编译不依赖
5.默认compile
依赖范围compile是支持传递的,test不支持传递
1.传递的意思是项目A,引用
- Jaxb org.xml.sax.saxparseexception : premature end of file
darrenzhu
xmlprematureJAXB
如果在使用JAXB把xml文件unmarshal成vo(XSD自动生成的vo)时碰到如下错误:
org.xml.sax.saxparseexception : premature end of file
很有可能时你直接读取文件为inputstream,然后将inputstream作为构建unmarshal需要的source参数。InputSource inputSource = new In
- CSS Specificity
周凡杨
html权重Specificitycss
有时候对于页面元素设置了样式,可为什么页面的显示没有匹配上呢? because specificity
CSS 的选择符是有权重的,当不同的选择符的样式设置有冲突时,浏览器会采用权重高的选择符设置的样式。
规则:
HTML标签的权重是1
Class 的权重是10
Id 的权重是100
- java与servlet
g21121
servlet
servlet 搞java web开发的人一定不会陌生,而且大家还会时常用到它。
下面是java官方网站上对servlet的介绍: java官网对于servlet的解释 写道
Java Servlet Technology Overview Servlets are the Java platform technology of choice for extending and enha
- eclipse中安装maven插件
510888780
eclipsemaven
1.首先去官网下载 Maven:
http://www.apache.org/dyn/closer.cgi/maven/binaries/apache-maven-3.2.3-bin.tar.gz
下载完成之后将其解压,
我将解压后的文件夹:apache-maven-3.2.3,
并将它放在 D:\tools目录下,
即 maven 最终的路径是:D:\tools\apache-mave
- jpa@OneToOne关联关系
布衣凌宇
jpa
Nruser里的pruserid关联到Pruser的主键id,实现对一个表的增删改,另一个表的数据随之增删改。
Nruser实体类
//*****************************************************************
@Entity
@Table(name="nruser")
@DynamicInsert @Dynam
- 我的spring学习笔记11-Spring中关于声明式事务的配置
aijuans
spring事务配置
这两天学到事务管理这一块,结合到之前的terasoluna框架,觉得书本上讲的还是简单阿。我就把我从书本上学到的再结合实际的项目以及网上看到的一些内容,对声明式事务管理做个整理吧。我看得Spring in Action第二版中只提到了用TransactionProxyFactoryBean和<tx:advice/>,定义注释驱动这三种,我承认后两种的内容很好,很强大。但是实际的项目当中
- java 动态代理简单实现
antlove
javahandlerproxydynamicservice
dynamicproxy.service.HelloService
package dynamicproxy.service;
public interface HelloService {
public void sayHello();
}
dynamicproxy.service.impl.HelloServiceImpl
package dynamicp
- JDBC连接数据库
百合不是茶
JDBC编程JAVA操作oracle数据库
如果我们要想连接oracle公司的数据库,就要首先下载oralce公司的驱动程序,将这个驱动程序的jar包导入到我们工程中;
JDBC链接数据库的代码和固定写法;
1,加载oracle数据库的驱动;
&nb
- 单例模式中的多线程分析
bijian1013
javathread多线程java多线程
谈到单例模式,我们立马会想到饿汉式和懒汉式加载,所谓饿汉式就是在创建类时就创建好了实例,懒汉式在获取实例时才去创建实例,即延迟加载。
饿汉式:
package com.bijian.study;
public class Singleton {
private Singleton() {
}
// 注意这是private 只供内部调用
private static
- javascript读取和修改原型特别需要注意原型的读写不具有对等性
bijian1013
JavaScriptprototype
对于从原型对象继承而来的成员,其读和写具有内在的不对等性。比如有一个对象A,假设它的原型对象是B,B的原型对象是null。如果我们需要读取A对象的name属性值,那么JS会优先在A中查找,如果找到了name属性那么就返回;如果A中没有name属性,那么就到原型B中查找name,如果找到了就返回;如果原型B中也没有
- 【持久化框架MyBatis3六】MyBatis3集成第三方DataSource
bit1129
dataSource
MyBatis内置了数据源的支持,如:
<environments default="development">
<environment id="development">
<transactionManager type="JDBC" />
<data
- 我程序中用到的urldecode和base64decode,MD5
bitcarter
cMD5base64decodeurldecode
这里是base64decode和urldecode,Md5在附件中。因为我是在后台所以需要解码:
string Base64Decode(const char* Data,int DataByte,int& OutByte)
{
//解码表
const char DecodeTable[] =
{
0, 0, 0, 0, 0, 0
- 腾讯资深运维专家周小军:QQ与微信架构的惊天秘密
ronin47
社交领域一直是互联网创业的大热门,从PC到移动端,从OICQ、MSN到QQ。到了移动互联网时代,社交领域应用开始彻底爆发,直奔黄金期。腾讯在过去几年里,社交平台更是火到爆,QQ和微信坐拥几亿的粉丝,QQ空间和朋友圈各种刷屏,写心得,晒照片,秀视频,那么谁来为企鹅保驾护航呢?支撑QQ和微信海量数据背后的架构又有哪些惊天内幕呢?本期大讲堂的内容来自今年2月份ChinaUnix对腾讯社交网络运营服务中心
- java-69-旋转数组的最小元素。把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个排好序的数组的一个旋转,输出旋转数组的最小元素
bylijinnan
java
public class MinOfShiftedArray {
/**
* Q69 旋转数组的最小元素
* 把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个排好序的数组的一个旋转,输出旋转数组的最小元素。
* 例如数组{3, 4, 5, 1, 2}为{1, 2, 3, 4, 5}的一个旋转,该数组的最小值为1。
*/
publ
- 看博客,应该是有方向的
Cb123456
反省看博客
看博客,应该是有方向的:
我现在就复习以前的,在补补以前不会的,现在还不会的,同时完善完善项目,也看看别人的博客.
我刚突然想到的:
1.应该看计算机组成原理,数据结构,一些算法,还有关于android,java的。
2.对于我,也快大四了,看一些职业规划的,以及一些学习的经验,看看别人的工作总结的.
为什么要写
- [开源与商业]做开源项目的人生活上一定要朴素,尽量减少对官方和商业体系的依赖
comsci
开源项目
为什么这样说呢? 因为科学和技术的发展有时候需要一个平缓和长期的积累过程,但是行政和商业体系本身充满各种不稳定性和不确定性,如果你希望长期从事某个科研项目,但是却又必须依赖于某种行政和商业体系,那其中的过程必定充满各种风险。。。
所以,为避免这种不确定性风险,我
- 一个 sql优化 ([精华] 一个查询优化的分析调整全过程!很值得一看 )
cwqcwqmax9
sql
见 http://www.itpub.net/forum.php?mod=viewthread&tid=239011
Web翻页优化实例
提交时间: 2004-6-18 15:37:49 回复 发消息
环境:
Linux ve
- Hibernat and Ibatis
dashuaifu
Hibernateibatis
Hibernate VS iBATIS 简介 Hibernate 是当前最流行的O/R mapping框架,当前版本是3.05。它出身于sf.net,现在已经成为Jboss的一部分了 iBATIS 是另外一种优秀的O/R mapping框架,当前版本是2.0。目前属于apache的一个子项目了。 相对Hibernate“O/R”而言,iBATIS 是一种“Sql Mappi
- 备份MYSQL脚本
dcj3sjt126com
mysql
#!/bin/sh
# this shell to backup mysql
#
[email protected] (QQ:1413161683 DuChengJiu)
_dbDir=/var/lib/mysql/
_today=`date +%w`
_bakDir=/usr/backup/$_today
[ ! -d $_bakDir ] && mkdir -p
- iOS第三方开源库的吐槽和备忘
dcj3sjt126com
ios
转自
ibireme的博客 做iOS开发总会接触到一些第三方库,这里整理一下,做一些吐槽。 目前比较活跃的社区仍旧是Github,除此以外也有一些不错的库散落在Google Code、SourceForge等地方。由于Github社区太过主流,这里主要介绍一下Github里面流行的iOS库。 首先整理了一份
Github上排名靠
- html wlwmanifest.xml
eoems
htmlxml
所谓优化wp_head()就是把从wp_head中移除不需要元素,同时也可以加快速度。
步骤:
加入到function.php
remove_action('wp_head', 'wp_generator');
//wp-generator移除wordpress的版本号,本身blog的版本号没什么意义,但是如果让恶意玩家看到,可能会用官网公布的漏洞攻击blog
remov
- 浅谈Java定时器发展
hacksin
java并发timer定时器
java在jdk1.3中推出了定时器类Timer,而后在jdk1.5后由Dou Lea从新开发出了支持多线程的ScheduleThreadPoolExecutor,从后者的表现来看,可以考虑完全替代Timer了。
Timer与ScheduleThreadPoolExecutor对比:
1.
Timer始于jdk1.3,其原理是利用一个TimerTask数组当作队列
- 移动端页面侧边导航滑入效果
ini
jqueryWebhtml5cssjavascirpt
效果体验:http://hovertree.com/texiao/mobile/2.htm可以使用移动设备浏览器查看效果。效果使用到jquery-2.1.4.min.js,该版本的jQuery库是用于支持HTML5的浏览器上,不再兼容IE8以前的浏览器,现在移动端浏览器一般都支持HTML5,所以使用该jQuery没问题。HTML文件代码:
<!DOCTYPE html>
<h
- AspectJ+Javasist记录日志
kane_xie
aspectjjavasist
在项目中碰到这样一个需求,对一个服务类的每一个方法,在方法开始和结束的时候分别记录一条日志,内容包括方法名,参数名+参数值以及方法执行的时间。
@Override
public String get(String key) {
// long start = System.currentTimeMillis();
// System.out.println("Be
- redis学习笔记
MJC410621
redisNoSQL
1)nosql数据库主要由以下特点:非关系型的、分布式的、开源的、水平可扩展的。
1,处理超大量的数据
2,运行在便宜的PC服务器集群上,
3,击碎了性能瓶颈。
1)对数据高并发读写。
2)对海量数据的高效率存储和访问。
3)对数据的高扩展性和高可用性。
redis支持的类型:
Sring 类型
set name lijie
get name lijie
set na
- 使用redis实现分布式锁
qifeifei
在多节点的系统中,如何实现分布式锁机制,其中用redis来实现是很好的方法之一,我们先来看一下jedis包中,有个类名BinaryJedis,它有个方法如下:
public Long setnx(final byte[] key, final byte[] value) {
checkIsInMulti();
client.setnx(key, value);
ret
- BI并非万能,中层业务管理报表要另辟蹊径
张老师的菜
大数据BI商业智能信息化
BI是商业智能的缩写,是可以帮助企业做出明智的业务经营决策的工具,其数据来源于各个业务系统,如ERP、CRM、SCM、进销存、HER、OA等。
BI系统不同于传统的管理信息系统,他号称是一个整体应用的解决方案,是融入管理思想的强大系统:有着系统整体的设计思想,支持对所有
- 安装rvm后出现rvm not a function 或者ruby -v后提示没安装ruby的问题
wudixiaotie
function
1.在~/.bashrc最后加入
[[ -s "$HOME/.rvm/scripts/rvm" ]] && source "$HOME/.rvm/scripts/rvm"
2.重新启动terminal输入:
rvm use ruby-2.2.1 --default
把当前安装的ruby版本设为默