flink分析使用之四Job的启动

flink分析使用之四Job的启动

一、介绍

在老的flink版本中,工作是由Jobmanager(低版本)和JobMaster来管理的,Flink通过JobManager实现Client和TaskManager交互协作,Client将JobGraph提交给JobManager,利用JobGraph实现ExecutionGraph,然后分发到TaskManager上执行。从 flip-6起,开始通过使用JobMaster,以Flink Dispatcher分发到JobManagerRunner将JobGraph发给JobMaster,JobMaster再将JobGraph实现万ExecutionGraph,传递给TaskManager工作。

二、脚本的启动

在第二篇的启动分析中分析到由start-cluster.sh里面调用jobmanager.sh,其中的相关代码如下:

if [[ $STARTSTOP == "start-foreground" ]]; then
    exec "${FLINK_BIN_DIR}"/flink-console.sh $ENTRYPOINT "${args[@]}"
else
    "${FLINK_BIN_DIR}"/flink-daemon.sh $STARTSTOP $ENTRYPOINT "${args[@]}"
fi

这个在前面分析过,根据不同的参数,来启动是前端交互式控制台还是守护进程,它们的内容基本类似,以守护进程为例:

\case $DAEMON in
  ......
  (standalonesession)
    CLASS_TO_RUN=org.apache.flink.runtime.entrypoint.StandaloneSessionClusterEntrypoint
;;
    (standalonejob)
        CLASS_TO_RUN=org.apache.flink.container.entrypoint.StandaloneJobClusterEntryPoint
    ;;

由此可以看出它会调用org.apache.flink.container.entrypoint.StandaloneJobClusterEntryPoint这个类,那么进入这个类看一看,到底是何方神圣:

/**
 * {@link JobClusterEntrypoint} which is started with a job in a predefined
 * location.
 */
public final class StandaloneJobClusterEntryPoint extends JobClusterEntrypoint {

	@Nonnull
	private final JobID jobId;

	@Nonnull
	private final SavepointRestoreSettings savepointRestoreSettings;

	@Nonnull
	private final String[] programArguments;

	@Nullable
	private final String jobClassName;

	private StandaloneJobClusterEntryPoint(
			Configuration configuration,
			@Nonnull JobID jobId,
			@Nonnull SavepointRestoreSettings savepointRestoreSettings,
			@Nonnull String[] programArguments,
			@Nullable String jobClassName) {
		super(configuration);
		this.jobId = requireNonNull(jobId, "jobId");
		this.savepointRestoreSettings = requireNonNull(savepointRestoreSettings, "savepointRestoreSettings");
		this.programArguments = requireNonNull(programArguments, "programArguments");
		this.jobClassName = jobClassName;
	}

	@Override
	protected DispatcherResourceManagerComponentFactory<?> createDispatcherResourceManagerComponentFactory(Configuration configuration) {
		return new JobDispatcherResourceManagerComponentFactory(
			StandaloneResourceManagerFactory.INSTANCE,
			new ClassPathJobGraphRetriever(jobId, savepointRestoreSettings, programArguments, jobClassName));
	}

	public static void main(String[] args) {
		// startup checks and logging
    ......

		StandaloneJobClusterEntryPoint entrypoint = new StandaloneJobClusterEntryPoint(
			configuration,
			clusterConfiguration.getJobId(),
			clusterConfiguration.getSavepointRestoreSettings(),
			clusterConfiguration.getArgs(),
			clusterConfiguration.getJobClassName());

		ClusterEntrypoint.runClusterEntrypoint(entrypoint);
	}
}

private void runCluster(Configuration configuration) throws Exception {
  synchronized (lock) {
    initializeServices(configuration);//这里会调用下面的haServices的创建

    // write host information into configuration
    configuration.setString(JobManagerOptions.ADDRESS, commonRpcService.getAddress());
    configuration.setInteger(JobManagerOptions.PORT, commonRpcService.getPort());

    //此处调用StandaloneJobClusterEntryPoint中的此函数,在相关的StandaloneSessionClusterEntrypoint中也有类似的函数
    final DispatcherResourceManagerComponentFactory<?> dispatcherResourceManagerComponentFactory = createDispatcherResourceManagerComponentFactory(configuration);

    clusterComponent = dispatcherResourceManagerComponentFactory.create(
      configuration,
      commonRpcService,
      haServices,
      blobServer,
      heartbeatServices,
      metricRegistry,
      archivedExecutionGraphStore,
      new AkkaQueryServiceRetriever(
        metricQueryServiceActorSystem,
        Time.milliseconds(configuration.getLong(WebOptions.TIMEOUT))),
      this);

    clusterComponent.getShutDownFuture().whenComplete(
      (ApplicationStatus applicationStatus, Throwable throwable) -> {
        if (throwable != null) {
          shutDownAsync(
            ApplicationStatus.UNKNOWN,
            ExceptionUtils.stringifyException(throwable),
            false);
        } else {
          // This is the general shutdown path. If a separate more specific shutdown was
          // already triggered, this will do nothing
          shutDownAsync(
            applicationStatus,
            null,
            true);
        }
      });
  }
}

可见他和前面介绍的StandaloneSessionClusterEntrypoint启动的最终都是启动runClusterEntrypoint,最终启动runCluster,在函数中,启动了大量的服务和相关的资源的启动(如线程池等),在其中启动了一个服务haServices,而这个服务里的内容包括:

public interface HighAvailabilityServices extends AutoCloseable {

	// ------------------------------------------------------------------------
	//  Constants
	// ------------------------------------------------------------------------

	/**
	 * This UUID should be used when no proper leader election happens, but a simple
	 * pre-configured leader is used. That is for example the case in non-highly-available
	 * standalone setups.
	 */
	UUID DEFAULT_LEADER_ID = new UUID(0, 0);

	/**
	 * This JobID should be used to identify the old JobManager when using the
	 * {@link HighAvailabilityServices}. With the new mode every JobMaster will have a
	 * distinct JobID assigned.
	 */
	JobID DEFAULT_JOB_ID = new JobID(0L, 0L);

	// ------------------------------------------------------------------------
	//  Services
	// ------------------------------------------------------------------------

	/**
	 * Gets the leader retriever for the cluster's resource manager.
	 */
	LeaderRetrievalService getResourceManagerLeaderRetriever();

	/**
	 * Gets the leader retriever for the dispatcher. This leader retrieval service
	 * is not always accessible.
	 */
	LeaderRetrievalService getDispatcherLeaderRetriever();

	/**
	 * Gets the leader retriever for the job JobMaster which is responsible for the given job
	 *
	 * @param jobID The identifier of the job.
	 * @return Leader retrieval service to retrieve the job manager for the given job
	 * @deprecated This method should only be used by the legacy code where the JobManager acts as the master.
	 */
	@Deprecated
	LeaderRetrievalService getJobManagerLeaderRetriever(JobID jobID);

	/**
	 * Gets the leader retriever for the job JobMaster which is responsible for the given job
	 *
	 * @param jobID The identifier of the job.
	 * @param defaultJobManagerAddress JobManager address which will be returned by
	 *                              a static leader retrieval service.
	 * @return Leader retrieval service to retrieve the job manager for the given job
	 */
	LeaderRetrievalService getJobManagerLeaderRetriever(JobID jobID, String defaultJobManagerAddress);

	LeaderRetrievalService getWebMonitorLeaderRetriever();

	/**
	 * Gets the leader election service for the cluster's resource manager.
	 *
	 * @return Leader election service for the resource manager leader election
	 */
	LeaderElectionService getResourceManagerLeaderElectionService();

	/**
	 * Gets the leader election service for the cluster's dispatcher.
	 *
	 * @return Leader election service for the dispatcher leader election
	 */
	LeaderElectionService getDispatcherLeaderElectionService();

	/**
	 * Gets the leader election service for the given job.
	 *
	 * @param jobID The identifier of the job running the election.
	 * @return Leader election service for the job manager leader election
	 */
	LeaderElectionService getJobManagerLeaderElectionService(JobID jobID);

	LeaderElectionService getWebMonitorLeaderElectionService();

	/**
	 * Gets the checkpoint recovery factory for the job manager
	 *
	 * @return Checkpoint recovery factory
	 */
	CheckpointRecoveryFactory getCheckpointRecoveryFactory();

	/**
	 * Gets the submitted job graph store for the job manager
	 *
	 * @return Submitted job graph store
	 * @throws Exception if the submitted job graph store could not be created
	 */
	SubmittedJobGraphStore getSubmittedJobGraphStore() throws Exception;

	/**
	 * Gets the registry that holds information about whether jobs are currently running.
	 *
	 * @return Running job registry to retrieve running jobs
	 */
	RunningJobsRegistry getRunningJobsRegistry() throws Exception;

	/**
	 * Creates the BLOB store in which BLOBs are stored in a highly-available fashion.
	 *
	 * @return Blob store
	 * @throws IOException if the blob store could not be created
	 */
	BlobStore createBlobStore() throws IOException;
......
}

从内容来看主要是作业和Leader选举相关的多。所以可以知道作业应该就是在这里启动的。

三、JobManager启动

开始说了,作业是通过Dispatcher来分发的。看一下Create相关:

protected DispatcherResourceManagerComponentFactory<?> createDispatcherResourceManagerComponentFactory(Configuration configuration) {
  return new JobDispatcherResourceManagerComponentFactory(
    StandaloneResourceManagerFactory.INSTANCE,
    new ClassPathJobGraphRetriever(jobId, savepointRestoreSettings, programArguments, jobClassName));
}
public enum StandaloneResourceManagerFactory implements ResourceManagerFactory<ResourceID> {
	INSTANCE;

	@Override
	public ResourceManager<ResourceID> createResourceManager(
			Configuration configuration,
			ResourceID resourceId,
			RpcService rpcService,
			HighAvailabilityServices highAvailabilityServices,
			HeartbeatServices heartbeatServices,
			MetricRegistry metricRegistry,
			FatalErrorHandler fatalErrorHandler,
			ClusterInformation clusterInformation,
			@Nullable String webInterfaceUrl,
			JobManagerMetricGroup jobManagerMetricGroup) throws Exception {
		final ResourceManagerRuntimeServicesConfiguration resourceManagerRuntimeServicesConfiguration = ResourceManagerRuntimeServicesConfiguration.fromConfiguration(configuration);
		final ResourceManagerRuntimeServices resourceManagerRuntimeServices = ResourceManagerRuntimeServices.fromConfiguration(
			resourceManagerRuntimeServicesConfiguration,
			highAvailabilityServices,
			rpcService.getScheduledExecutor());

		return new StandaloneResourceManager(
			rpcService,
			getEndpointId(),
			resourceId,
			highAvailabilityServices,
			heartbeatServices,
			resourceManagerRuntimeServices.getSlotManager(),
			metricRegistry,
			resourceManagerRuntimeServices.getJobLeaderIdService(),
			clusterInformation,
			fatalErrorHandler,
			jobManagerMetricGroup);
	}
}

//下面有说明
public class JobDispatcherResourceManagerComponentFactory extends AbstractDispatcherResourceManagerComponentFactory<MiniDispatcher, RestfulGateway> {

	public JobDispatcherResourceManagerComponentFactory(@Nonnull ResourceManagerFactory<?> resourceManagerFactory, @Nonnull JobGraphRetriever jobGraphRetriever) {
		super(new JobDispatcherFactory(jobGraphRetriever), resourceManagerFactory, JobRestEndpointFactory.INSTANCE);
	}

	@Override
	protected DispatcherResourceManagerComponent<MiniDispatcher> createDispatcherResourceManagerComponent(
			MiniDispatcher dispatcher,
			ResourceManager<?> resourceManager,
			LeaderRetrievalService dispatcherLeaderRetrievalService,
			LeaderRetrievalService resourceManagerRetrievalService,
			WebMonitorEndpoint<?> webMonitorEndpoint,
			JobManagerMetricGroup jobManagerMetricGroup) {
		return new JobDispatcherResourceManagerComponent(
			dispatcher,
			resourceManager,
			dispatcherLeaderRetrievalService,
			resourceManagerRetrievalService,
			webMonitorEndpoint,
			jobManagerMetricGroup);
	}
}
//创建HaServices
protected HighAvailabilityServices createHaServices(
  Configuration configuration,
  Executor executor) throws Exception {
  return HighAvailabilityServicesUtils.createHighAvailabilityServices(
    configuration,
    executor,
    HighAvailabilityServicesUtils.AddressResolution.NO_ADDRESS_RESOLUTION);
}
public static HighAvailabilityServices createHighAvailabilityServices(
  Configuration configuration,
  Executor executor,
  AddressResolution addressResolution) throws Exception {

  HighAvailabilityMode highAvailabilityMode = LeaderRetrievalUtils.getRecoveryMode(configuration);

  switch (highAvailabilityMode) {
    case NONE:
      final Tuple2<String, Integer> hostnamePort = getJobManagerAddress(configuration);

      final String jobManagerRpcUrl = AkkaRpcServiceUtils.getRpcUrl(
        hostnamePort.f0,
        hostnamePort.f1,
        JobMaster.JOB_MANAGER_NAME,
        addressResolution,
        configuration);
      final String resourceManagerRpcUrl = AkkaRpcServiceUtils.getRpcUrl(
        hostnamePort.f0,
        hostnamePort.f1,
        ResourceManager.RESOURCE_MANAGER_NAME,
        addressResolution,
        configuration);
      final String dispatcherRpcUrl = AkkaRpcServiceUtils.getRpcUrl(
        hostnamePort.f0,
        hostnamePort.f1,
        Dispatcher.DISPATCHER_NAME,
        addressResolution,
        configuration);

      final String address = checkNotNull(configuration.getString(RestOptions.ADDRESS),
        "%s must be set",
        RestOptions.ADDRESS.key());
      final int port = configuration.getInteger(RestOptions.PORT);
      final boolean enableSSL = SSLUtils.isRestSSLEnabled(configuration);
      final String protocol = enableSSL ? "https://" : "http://";

      return new StandaloneHaServices(
        resourceManagerRpcUrl,
        dispatcherRpcUrl,
        jobManagerRpcUrl,
        String.format("%s%s:%s", protocol, address, port));
    case ZOOKEEPER:
      BlobStoreService blobStoreService = BlobUtils.createBlobStoreFromConfig(configuration);

      return new ZooKeeperHaServices(
        ZooKeeperUtils.startCuratorFramework(configuration),
        executor,
        configuration,
        blobStoreService);

    case FACTORY_CLASS:
      return createCustomHAServices(configuration, executor);

    default:
      throw new Exception("Recovery mode " + highAvailabilityMode + " is not supported.");
  }
}

抽丝剥茧会发现,分发器的创建出现了,有了它,作业就可以通过它来发送给任务来实现操作。下面看一下最终的Create:

public abstract class AbstractDispatcherResourceManagerComponentFactory<T extends Dispatcher, U extends RestfulGateway> implements DispatcherResourceManagerComponentFactory<T> {

	private final Logger log = LoggerFactory.getLogger(getClass());

	@Nonnull
	private final DispatcherFactory<T> dispatcherFactory;

	@Nonnull
	private final ResourceManagerFactory<?> resourceManagerFactory;

	@Nonnull
	private final RestEndpointFactory<U> restEndpointFactory;

	public AbstractDispatcherResourceManagerComponentFactory(
			@Nonnull DispatcherFactory<T> dispatcherFactory,
			@Nonnull ResourceManagerFactory<?> resourceManagerFactory,
			@Nonnull RestEndpointFactory<U> restEndpointFactory) {
		this.dispatcherFactory = dispatcherFactory;
		this.resourceManagerFactory = resourceManagerFactory;
		this.restEndpointFactory = restEndpointFactory;
	}

  //这里是实现的create这个函数,看看有多少个相关的服务
	@Override
	public DispatcherResourceManagerComponent<T> create(
			Configuration configuration,
			RpcService rpcService,
			HighAvailabilityServices highAvailabilityServices,
			BlobServer blobServer,
			HeartbeatServices heartbeatServices,
			MetricRegistry metricRegistry,
			ArchivedExecutionGraphStore archivedExecutionGraphStore,
			MetricQueryServiceRetriever metricQueryServiceRetriever,
			FatalErrorHandler fatalErrorHandler) throws Exception {

		LeaderRetrievalService dispatcherLeaderRetrievalService = null;
		LeaderRetrievalService resourceManagerRetrievalService = null;
		WebMonitorEndpoint<U> webMonitorEndpoint = null;
		ResourceManager<?> resourceManager = null;
		JobManagerMetricGroup jobManagerMetricGroup = null;
		T dispatcher = null;

		try {
			dispatcherLeaderRetrievalService = highAvailabilityServices.getDispatcherLeaderRetriever();

			resourceManagerRetrievalService = highAvailabilityServices.getResourceManagerLeaderRetriever();

			final LeaderGatewayRetriever<DispatcherGateway> dispatcherGatewayRetriever = new RpcGatewayRetriever<>(
				rpcService,
				DispatcherGateway.class,
				DispatcherId::fromUuid,
				10,
				Time.milliseconds(50L));

			final LeaderGatewayRetriever<ResourceManagerGateway> resourceManagerGatewayRetriever = new RpcGatewayRetriever<>(
				rpcService,
				ResourceManagerGateway.class,
				ResourceManagerId::fromUuid,
				10,
				Time.milliseconds(50L));

			final ExecutorService executor = WebMonitorEndpoint.createExecutorService(
				configuration.getInteger(RestOptions.SERVER_NUM_THREADS),
				configuration.getInteger(RestOptions.SERVER_THREAD_PRIORITY),
				"DispatcherRestEndpoint");

			final long updateInterval = configuration.getLong(MetricOptions.METRIC_FETCHER_UPDATE_INTERVAL);
			final MetricFetcher metricFetcher = updateInterval == 0
				? VoidMetricFetcher.INSTANCE
				: MetricFetcherImpl.fromConfiguration(
					configuration,
					metricQueryServiceRetriever,
					dispatcherGatewayRetriever,
					executor);

			webMonitorEndpoint = restEndpointFactory.createRestEndpoint(
				configuration,
				dispatcherGatewayRetriever,
				resourceManagerGatewayRetriever,
				blobServer,
				executor,
				metricFetcher,
				highAvailabilityServices.getWebMonitorLeaderElectionService(),
				fatalErrorHandler);

			log.debug("Starting Dispatcher REST endpoint.");
			webMonitorEndpoint.start();

			final String hostname = getHostname(rpcService);

			jobManagerMetricGroup = MetricUtils.instantiateJobManagerMetricGroup(
				metricRegistry,
				hostname,
				ConfigurationUtils.getSystemResourceMetricsProbingInterval(configuration));

			resourceManager = resourceManagerFactory.createResourceManager(
				configuration,
				ResourceID.generate(),
				rpcService,
				highAvailabilityServices,
				heartbeatServices,
				metricRegistry,
				fatalErrorHandler,
				new ClusterInformation(hostname, blobServer.getPort()),
				webMonitorEndpoint.getRestBaseUrl(),
				jobManagerMetricGroup);

			final HistoryServerArchivist historyServerArchivist = HistoryServerArchivist.createHistoryServerArchivist(configuration, webMonitorEndpoint);

			dispatcher = dispatcherFactory.createDispatcher(
				configuration,
				rpcService,
				highAvailabilityServices,
				resourceManagerGatewayRetriever,
				blobServer,
				heartbeatServices,
				jobManagerMetricGroup,
				metricRegistry.getMetricQueryServicePath(),
				archivedExecutionGraphStore,
				fatalErrorHandler,
				historyServerArchivist);

			log.debug("Starting ResourceManager.");
			resourceManager.start();
			resourceManagerRetrievalService.start(resourceManagerGatewayRetriever);

			log.debug("Starting Dispatcher.");
			dispatcher.start();
			dispatcherLeaderRetrievalService.start(dispatcherGatewayRetriever);

			return createDispatcherResourceManagerComponent(
				dispatcher,
				resourceManager,
				dispatcherLeaderRetrievalService,
				resourceManagerRetrievalService,
				webMonitorEndpoint,
				jobManagerMetricGroup);

		} catch (Exception exception) {
			// clean up all started components
			if (dispatcherLeaderRetrievalService != null) {
				try {
					dispatcherLeaderRetrievalService.stop();
				} catch (Exception e) {
					exception = ExceptionUtils.firstOrSuppressed(e, exception);
				}
			}

			if (resourceManagerRetrievalService != null) {
				try {
					resourceManagerRetrievalService.stop();
				} catch (Exception e) {
					exception = ExceptionUtils.firstOrSuppressed(e, exception);
				}
			}

			final Collection<CompletableFuture<Void>> terminationFutures = new ArrayList<>(3);

			if (webMonitorEndpoint != null) {
				terminationFutures.add(webMonitorEndpoint.closeAsync());
			}

			if (resourceManager != null) {
				terminationFutures.add(resourceManager.closeAsync());
			}

			if (dispatcher != null) {
				terminationFutures.add(dispatcher.closeAsync());
			}

			final FutureUtils.ConjunctFuture<Void> terminationFuture = FutureUtils.completeAll(terminationFutures);

			try {
				terminationFuture.get();
			} catch (Exception e) {
				exception = ExceptionUtils.firstOrSuppressed(e, exception);
			}

			if (jobManagerMetricGroup != null) {
				jobManagerMetricGroup.close();
			}

			throw new FlinkException("Could not create the DispatcherResourceManagerComponent.", exception);
		}
	}

	protected String getHostname(RpcService rpcService) {
		final String rpcServiceAddress = rpcService.getAddress();
		return rpcServiceAddress != null && rpcServiceAddress.isEmpty() ? "localhost" : rpcServiceAddress;
	}

	protected abstract DispatcherResourceManagerComponent<T> createDispatcherResourceManagerComponent(
		T dispatcher,
		ResourceManager<?> resourceManager,
		LeaderRetrievalService dispatcherLeaderRetrievalService,
		LeaderRetrievalService resourceManagerRetrievalService,
		WebMonitorEndpoint<?> webMonitorEndpoint,
		JobManagerMetricGroup jobManagerMetricGroup);
}

四、分析

通过上面的代码流程可以看到其实整个作业的启动分成了两大部分:
1、各种资源的创建,主要在createDispatcherResourceManagerComponentFactory这个函数中实现,包括各种相关的接口实现。
2、在1基础上实现的具体的接口内容和相关的服务生成。
下一篇具体分析。

六、总结

写这一篇遇到了很多具体的细节的问题,特别是工作的各个环节的关系,还是要仔细画图来分析,下篇会对此进行详细的说明。

你可能感兴趣的:(大数据,flink)