正则化缓解过拟合(不能很好的预测样本值,即训练的loss很小,但是测试的loss很大)
正则化在损失函数中引入模型复杂度指标,利用给w加权值,弱化了训练数据的噪声(一般不正则化b)
loss=loss(y与y_的均方误差或者交叉熵)+REGULARIZER*loss(w)
w是需要正则化的参数,REGULARIZER给出参数w在总loss中的比例,即正则化的权重
tensorflow有两个正则化公式:
l1正则化:loss(w)=tf.contrib.layers.l1_regularizer(REGULARIZER)(w) |wi|的和
l2正则化(一般都使用这个):loss(w)=f.contrib.layers.l2_regularizer(REGULARIZER)(w) |wi的平方|的和
tf.add_to_collection("losses",tf.contrib.layers.l2_regularizer(regularizer)(w))
loss=cem+tf.add_n(tf.get_collection("losses"))
画图
import matplotlib.pyplot as plt sudo pip install +待安装模块名
plt.scatter(x坐标,y坐标,c="颜色")
plt.show()
xx,yy=np.mgrid[起:止:步长,起:止:步长] 得到xy范围和精度即步长
grid=np.c_[x.ravel(),yy.ravel()]将xy坐标拉直,变成1行n列,对应配对,形成网格坐标点
probs=sess.run(y,feed_dict=[x:grid])
probs=probs.reshape(xx.shape)
plt.contour(x轴坐标值,y轴坐标值,该点的高度,levels=[等高线的高度])
plt.show()
#coding:utf-8
#0导入模块 ,生成模拟数据集
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
BATCH_SIZE = 30
seed = 2
#基于seed产生随机数
rdm = np.random.RandomState(seed)
#随机数返回300行2列的矩阵,表示300组坐标点(x0,x1)作为输入数据集
X = rdm.randn(300,2)
#从X这个300行2列的矩阵中取出一行,判断如果两个坐标的平方和小于2,给Y赋值1,其余赋值0
#作为输入数据集的标签(正确答案)
Y_ = [int(x0*x0 + x1*x1 <2) for (x0,x1) in X]
#遍历Y中的每个元素,1赋值'red'其余赋值'blue',这样可视化显示时人可以直观区分
Y_c = [['red' if y else 'blue'] for y in Y_]
#对数据集X和标签Y进行shape整理,第一个元素为-1表示,随第二个参数计算得到,第二个元素表示多少列,把X整理为n行2列,把Y整理为n行1列
X = np.vstack(X).reshape(-1,2)
Y_ = np.vstack(Y_).reshape(-1,1)
print (X)
print (Y_)
print (Y_c)
#用plt.scatter画出数据集X各行中第0列元素和第1列元素的点即各行的(x0,x1),用各行Y_c对应的值表示颜色(c是color的缩写)
plt.scatter(X[:,0], X[:,1], c=np.squeeze(Y_c))
plt.show()
#定义神经网络的输入、参数和输出,定义前向传播过程
def get_weight(shape, regularizer):
w = tf.Variable(tf.random_normal(shape), dtype=tf.float32)
tf.add_to_collection('losses', tf.contrib.layers.l2_regularizer(regularizer)(w))
return w
def get_bias(shape):
b = tf.Variable(tf.constant(0.01, shape=shape))
return b
x = tf.placeholder(tf.float32, shape=(None, 2))
y_ = tf.placeholder(tf.float32, shape=(None, 1))
w1 = get_weight([2,11], 0.01)
b1 = get_bias([11])
y1 = tf.nn.relu(tf.matmul(x, w1)+b1)
w2 = get_weight([11,1], 0.01)
b2 = get_bias([1])
y = tf.matmul(y1, w2)+b2
#定义损失函数
loss_mse = tf.reduce_mean(tf.square(y-y_))
loss_total = loss_mse + tf.add_n(tf.get_collection('losses'))
#定义反向传播方法:不含正则化
train_step = tf.train.AdamOptimizer(0.0001).minimize(loss_mse)
with tf.Session() as sess:
init_op = tf.global_variables_initializer()
sess.run(init_op)
STEPS = 40000
for i in range(STEPS):
start = (i*BATCH_SIZE) % 300
end = start + BATCH_SIZE
sess.run(train_step, feed_dict={x:X[start:end], y_:Y_[start:end]})
if i % 2000 == 0:
loss_mse_v = sess.run(loss_mse, feed_dict={x:X, y_:Y_})
print("After %d steps, loss is: %f" %(i, loss_mse_v))
#xx在-3到3之间以步长为0.01,yy在-3到3之间以步长0.01,生成二维网格坐标点
xx, yy = np.mgrid[-3:3:.01, -3:3:.01]
#将xx , yy拉直,并合并成一个2列的矩阵,得到一个网格坐标点的集合
grid = np.c_[xx.ravel(), yy.ravel()]
#将网格坐标点喂入神经网络 ,probs为输出
probs = sess.run(y, feed_dict={x:grid})
#probs的shape调整成xx的样子
probs = probs.reshape(xx.shape)
print ("w1:\n",sess.run(w1))
print ("b1:\n",sess.run(b1))
print ("w2:\n",sess.run(w2))
print ("b2:\n",sess.run(b2))
plt.scatter(X[:,0], X[:,1], c=np.squeeze(Y_c))
plt.contour(xx, yy, probs, levels=[.5])
plt.show()
#定义反向传播方法:包含正则化
train_step = tf.train.AdamOptimizer(0.0001).minimize(loss_total)
with tf.Session() as sess:
init_op = tf.global_variables_initializer()
sess.run(init_op)
STEPS = 40000
for i in range(STEPS):
start = (i*BATCH_SIZE) % 300
end = start + BATCH_SIZE
sess.run(train_step, feed_dict={x: X[start:end], y_:Y_[start:end]})
if i % 2000 == 0:
loss_v = sess.run(loss_total, feed_dict={x:X,y_:Y_})
print("After %d steps, loss is: %f" %(i, loss_v))
xx, yy = np.mgrid[-3:3:.01, -3:3:.01]
#将xy坐标拉直,变成1行n列,对应配对,形成网格坐标点
grid = np.c_[xx.ravel(), yy.ravel()]
probs = sess.run(y, feed_dict={x:grid})
probs = probs.reshape(xx.shape)
print ("w1:\n",sess.run(w1))
print ("b1:\n",sess.run(b1))
print ("w2:\n",sess.run(w2))
print ("b2:\n",sess.run(b2))
plt.scatter(X[:,0], X[:,1], c=np.squeeze(Y_c))
plt.contour(xx, yy, probs, levels=[.5])
plt.show()