class7--tensorflow:正则化

正则化缓解过拟合(不能很好的预测样本值,即训练的loss很小,但是测试的loss很大)

 

正则化在损失函数中引入模型复杂度指标,利用给w加权值,弱化了训练数据的噪声(一般不正则化b)

loss=loss(y与y_的均方误差或者交叉熵)+REGULARIZER*loss(w)

w是需要正则化的参数,REGULARIZER给出参数w在总loss中的比例,即正则化的权重
tensorflow有两个正则化公式:

l1正则化:loss(w)=tf.contrib.layers.l1_regularizer(REGULARIZER)(w)    |wi|的和

l2正则化(一般都使用这个):loss(w)=f.contrib.layers.l2_regularizer(REGULARIZER)(w)    |wi的平方|的和

 

tf.add_to_collection("losses",tf.contrib.layers.l2_regularizer(regularizer)(w))

loss=cem+tf.add_n(tf.get_collection("losses"))

画图

import matplotlib.pyplot as plt    sudo pip install +待安装模块名

plt.scatter(x坐标,y坐标,c="颜色")

plt.show()
xx,yy=np.mgrid[起:止:步长,起:止:步长]    得到xy范围和精度即步长

grid=np.c_[x.ravel(),yy.ravel()]将xy坐标拉直,变成1行n列,对应配对,形成网格坐标点
probs=sess.run(y,feed_dict=[x:grid])

probs=probs.reshape(xx.shape)

 

plt.contour(x轴坐标值,y轴坐标值,该点的高度,levels=[等高线的高度])

plt.show()

#coding:utf-8
#0导入模块 ,生成模拟数据集
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
BATCH_SIZE = 30 
seed = 2 
#基于seed产生随机数
rdm = np.random.RandomState(seed)
#随机数返回300行2列的矩阵,表示300组坐标点(x0,x1)作为输入数据集
X = rdm.randn(300,2)
#从X这个300行2列的矩阵中取出一行,判断如果两个坐标的平方和小于2,给Y赋值1,其余赋值0
#作为输入数据集的标签(正确答案)
Y_ = [int(x0*x0 + x1*x1 <2) for (x0,x1) in X]
#遍历Y中的每个元素,1赋值'red'其余赋值'blue',这样可视化显示时人可以直观区分
Y_c = [['red' if y else 'blue'] for y in Y_]
#对数据集X和标签Y进行shape整理,第一个元素为-1表示,随第二个参数计算得到,第二个元素表示多少列,把X整理为n行2列,把Y整理为n行1列
X = np.vstack(X).reshape(-1,2)
Y_ = np.vstack(Y_).reshape(-1,1)
print (X)
print (Y_)
print (Y_c)
#用plt.scatter画出数据集X各行中第0列元素和第1列元素的点即各行的(x0,x1),用各行Y_c对应的值表示颜色(c是color的缩写) 
plt.scatter(X[:,0], X[:,1], c=np.squeeze(Y_c)) 
plt.show()


#定义神经网络的输入、参数和输出,定义前向传播过程 
def get_weight(shape, regularizer):
	w = tf.Variable(tf.random_normal(shape), dtype=tf.float32)
	tf.add_to_collection('losses', tf.contrib.layers.l2_regularizer(regularizer)(w))
	return w

def get_bias(shape):  
    b = tf.Variable(tf.constant(0.01, shape=shape)) 
    return b
	
x = tf.placeholder(tf.float32, shape=(None, 2))
y_ = tf.placeholder(tf.float32, shape=(None, 1))

w1 = get_weight([2,11], 0.01)	
b1 = get_bias([11])
y1 = tf.nn.relu(tf.matmul(x, w1)+b1)

w2 = get_weight([11,1], 0.01)
b2 = get_bias([1])
y = tf.matmul(y1, w2)+b2 


#定义损失函数
loss_mse = tf.reduce_mean(tf.square(y-y_))
loss_total = loss_mse + tf.add_n(tf.get_collection('losses'))


#定义反向传播方法:不含正则化
train_step = tf.train.AdamOptimizer(0.0001).minimize(loss_mse)

with tf.Session() as sess:
	init_op = tf.global_variables_initializer()
	sess.run(init_op)
	STEPS = 40000
	for i in range(STEPS):
		start = (i*BATCH_SIZE) % 300
		end = start + BATCH_SIZE
		sess.run(train_step, feed_dict={x:X[start:end], y_:Y_[start:end]})
		if i % 2000 == 0:
			loss_mse_v = sess.run(loss_mse, feed_dict={x:X, y_:Y_})
			print("After %d steps, loss is: %f" %(i, loss_mse_v))
    #xx在-3到3之间以步长为0.01,yy在-3到3之间以步长0.01,生成二维网格坐标点
	xx, yy = np.mgrid[-3:3:.01, -3:3:.01]
	#将xx , yy拉直,并合并成一个2列的矩阵,得到一个网格坐标点的集合
	grid = np.c_[xx.ravel(), yy.ravel()]
	#将网格坐标点喂入神经网络 ,probs为输出
	probs = sess.run(y, feed_dict={x:grid})
	#probs的shape调整成xx的样子
	probs = probs.reshape(xx.shape)
	print ("w1:\n",sess.run(w1))
	print ("b1:\n",sess.run(b1))
	print ("w2:\n",sess.run(w2))	
	print ("b2:\n",sess.run(b2))

plt.scatter(X[:,0], X[:,1], c=np.squeeze(Y_c))
plt.contour(xx, yy, probs, levels=[.5])
plt.show()



#定义反向传播方法:包含正则化
train_step = tf.train.AdamOptimizer(0.0001).minimize(loss_total)

with tf.Session() as sess:
	init_op = tf.global_variables_initializer()
	sess.run(init_op)
	STEPS = 40000
	for i in range(STEPS):
		start = (i*BATCH_SIZE) % 300
		end = start + BATCH_SIZE
		sess.run(train_step, feed_dict={x: X[start:end], y_:Y_[start:end]})
		if i % 2000 == 0:
			loss_v = sess.run(loss_total, feed_dict={x:X,y_:Y_})
			print("After %d steps, loss is: %f" %(i, loss_v))

	xx, yy = np.mgrid[-3:3:.01, -3:3:.01]
#将xy坐标拉直,变成1行n列,对应配对,形成网格坐标点
	grid = np.c_[xx.ravel(), yy.ravel()]

	probs = sess.run(y, feed_dict={x:grid})
	probs = probs.reshape(xx.shape)
	print ("w1:\n",sess.run(w1))
	print ("b1:\n",sess.run(b1))
	print ("w2:\n",sess.run(w2))
	print ("b2:\n",sess.run(b2))

plt.scatter(X[:,0], X[:,1], c=np.squeeze(Y_c)) 
plt.contour(xx, yy, probs, levels=[.5])
plt.show()

 

你可能感兴趣的:(tensorflow)