C# 集合类 Array Arraylist List Hashtable Dictionary Stack Queue

我们用的比较多的非泛型集合类主要有 ArrayList HashTable类。我们经常用HashTable 来存储将要写入到数据库或者返回的信息,在这之间要不断的进行类型的转化,增加了系统装箱和拆箱的负担,如果我们操纵的数据类型相对确定的化 Dictionary 集合类来存储数据就方便多了,例如我们需要在电子商务网站中存储用户的购物车信息(商品名,对应的商品个数)时,完全可以用 Dictionary 来存储购物车信息,而不需要任何的类型转化。

 

1.数组是固定大小的,不能伸缩。虽然System.Array.Resize这个泛型方法可以重置数组大小,

但是该方法是重新创建新设置大小的数组,用的是旧数组的元素初始化。随后以前的数组就废弃!而集合却是可变长的

2.数组要声明元素的类型,集合类的元素类型却是object.

3.数组可读可写不能声明只读数组。集合类可以提供ReadOnly方法以只读方式使用集合。

4.数组要有整数下标才能访问特定的元素,然而很多时候这样的下标并不是很有用。集合也是数据列表却不使用下标访问。

很多时候集合有定制的下标类型,对于队列和栈根本就不支持下标访问!

1.       数组

int[] intArray1;

//初始化已声明的一维数组

intArray1 = new int[3];

intArray1 = new int[3]{1,2,3};

intArray1 = new int[]{1,2,3};

 

2.       ArrayList类对象被设计成为一个动态数组类型,其容量会随着需要而适当的扩充

方法

1:Add()向数组中添加一个元素,

2:Remove()删除数组中的一个元素

3:RemoveAt(int i)删除数组中索引值为i的元素

4:Reverse()反转数组的元素

5:Sort()以从小到大的顺序排列数组的元素

6:Clone()复制一个数组

 

using System; using System.Collections.Generic; using System.Text; using System.Collections; namespace ConsoleApplication1 { class Program { static void Main(string[] args) { ArrayList al = new ArrayList(); al.Add(100);//单个添加 foreach (int number in new int[6] { 9, 3, 7, 2, 4, 8 }) { al.Add(number);//集体添加方法一//清清月儿 http://blog.csdn.net/21aspnet/ } int[] number2 = new int[2] { 11,12 }; al.AddRange(number2);//集体添加方法二 al.Remove(3);//移除值为3的 al.RemoveAt(3);//移除第3个 ArrayList al2 = new ArrayList(al.GetRange(1, 3));//新ArrayList只取旧ArrayList一部份 Console.WriteLine("遍历方法一:"); foreach (int i in al)//不要强制转换 { Console.WriteLine(i);//遍历方法一 } Console.WriteLine("遍历方法二:"); for (int i = 0; i != al2.Count; i++)//数组是length { int number = (int)al2[i];//一定要强制转换 Console.WriteLine(number);//遍历方法二 } } } }   

 

3.       List

可通过索引访问的对象的强类型列表。提供用于对列表进行搜索、排序和操作的方法,在决定使用 List 还是使用 ArrayList 类(两者具有类似的功能)时,记住 List 类在大多数情况下执行得更好并且是类型安全的。如果对 List 类的类型 T 使用引用类型,则两个类的行为是完全相同的。但是,如果对类型 T 使用值类型,则需要考虑实现和装箱问题。

如果对类型 T 使用值类型,则编译器将特别针对该值类型生成 List 类的实现。这意味着不必对 List 对象的列表元素进行装箱就可以使用该元素,并且在创建大约 500 个列表元素之后,不对列表元素装箱所节省的内存将大于生成该类实现所使用的内存。

//声明一个List对象,只加入string参数

List names = new List();

names.Add("乔峰");

names.Add("欧阳峰");

names.Add("马蜂");

//遍历List

foreach (string name in names)

{

Console.WriteLine(name);

}

//向List中插入元素

names.Insert(2, "张三峰");

//移除指定元素

names.Remove("马蜂");

 

4.       Dictionary

表示键和值的集合。Dictionary遍历输出的顺序,就是加入的顺序,这点与Hashtable不同

 

Dictionary myDic = new Dictionary(); myDic.Add("aaa", "111"); myDic.Add("bbb", "222"); myDic.Add("ccc", "333"); myDic.Add("ddd", "444"); //如果添加已经存在的键,add方法会抛出异常 try { myDic.Add("ddd","ddd"); } catch (ArgumentException ex) { Console.WriteLine("此键已经存在:" + ex.Message); } //解决add()异常的方法是用ContainsKey()方法来判断键是否存在 if (!myDic.ContainsKey("ddd")) { myDic.Add("ddd", "ddd"); } else { Console.WriteLine("此键已经存在:"); } //而使用索引器来负值时,如果建已经存在,就会修改已有的键的键值,而不会抛出异常 myDic ["ddd"]="ddd"; myDic["eee"] = "555"; //使用索引器来取值时,如果键不存在就会引发异常 try { Console.WriteLine("不存在的键""fff""的键值为:" + myDic["fff"]); } catch (KeyNotFoundException ex) { Console.WriteLine("没有找到键引发异常:" + ex.Message); } //解决上面的异常的方法是使用ContarnsKey() 来判断时候存在键,如果经常要取健值得化最好用 TryGetValue方法来获取集合中的对应键值 string value = ""; if (myDic.TryGetValue("fff", out value)) { Console.WriteLine("不存在的键""fff""的键值为:" + value ); } else { Console.WriteLine("没有找到对应键的键值"); } //下面用foreach 来遍历键值对 //泛型结构体 用来存储健值对 foreach (KeyValuePair kvp in myDic) { Console.WriteLine("key={0},value={1}", kvp.Key, kvp.Value); } //获取值得集合 foreach (string s in myDic.Values) { Console.WriteLine("value={0}", s); } //获取值得另一种方式 Dictionary.ValueCollection values = myDic.Values; foreach (string s in values) { Console.WriteLine("value={0}", s); }   

 


5.  SortedList类

与哈希表类似,区别在于SortedList中的Key数组排好序的

//SortedList

System.Collections.SortedList list=new System.Collections.SortedList();

list.Add("key2",2);

list.Add("key1",1);

for(int i=0;i

{

System.Console.WriteLine(list.GetKey(i));

}

6.Hashtable类

哈希表,名-值对。类似于字典(比数组更强大)。哈希表是经过优化的,访问下标的对象先散列过。如果以任意类型键值访问其中元素会快于其他集合。

GetHashCode()方法返回一个int型数据,使用这个键的值生成该int型数据。哈希表获取这个值最后返回一个索引,表示带有给定散列的数据项在字典中存储的位置。

Hashtable 和 Dictionary 类型
 1:单线程程序中推荐使用 Dictionary, 有泛型优势, 且读取速度较快, 容量利用更充分.
 2:多线程程序中推荐使用 Hashtable, 默认的 Hashtable 允许单线程写入, 多线程读取, 对 Hashtable 进一步调用 Synchronized() 方法可以获得完全线程安全的类型. 而 Dictionary 非线程安全, 必须人为使用 lock 语句进行保护, 效率大减.
 3:Dictionary 有按插入顺序排列数据的特性 (注: 但当调用 Remove() 删除过节点后顺序被打乱), 因此在需要体现顺序的情境中使用 Dictionary 能获得一定方便.

 

HashTable中的key/value均为object类型,由包含集合元素的存储桶组成。存储桶是 HashTable中各元素的虚拟子组,与大多数集合中进行的搜索和检索相比,存储桶可令搜索和检索更为便捷。每一存储桶都与一个哈希代码关联,该哈希代码是使用哈希函数生成的并基于该元素的键。HashTable的优点就在于其索引的方式,速度非常快。如果以任意类型键值访问其中元素会快于其他集合,特别是当数据量特别大的时候,效率差别尤其大。

HashTable的应用场合有:做对象缓存,树递归算法的替代,和各种需提升效率的场合。

 

   //Hashtable sample System.Collections.Hashtable ht = new System.Collections.Hashtable(); //--Be careful: Keys can't be duplicated, and can't be null---- ht.Add(1, "apple"); ht.Add(2, "banana"); ht.Add(3, "orange"); //Modify item value: if(ht.ContainsKey(1)) ht[1] = "appleBad"; //The following code will return null oValue, no exception object oValue = ht[5]; //traversal 1: foreach (DictionaryEntry de in ht) { Console.WriteLine(de.Key); Console.WriteLine(de.Value); } //traversal 2: System.Collections.IDictionaryEnumerator d = ht.GetEnumerator(); while (d.MoveNext()) { Console.WriteLine("key:{0} value:{1}", d.Entry.Key, d.Entry.Value); } //Clear items ht.Clear();  
Dictionary和HashTable内部实现差不多,但前者无需装箱拆箱操作,效率略高一点。

//Dictionary sample System.Collections.Generic.Dictionary fruits = new System.Collections.Generic.Dictionary(); fruits.Add(1, "apple"); fruits.Add(2, "banana"); fruits.Add(3, "orange"); foreach (int i in fruits.Keys) { Console.WriteLine("key:{0} value:{1}", i, fruits); } if (fruits.ContainsKey(1)) { Console.WriteLine("contain this key."); }
HashTable是经过优化的,访问下标的对象先散列过,所以内部是无序散列的,保证了高效率,也就是说,其输出不是按照开始加入的顺序,而Dictionary遍历输出的顺序,就是加入的顺序,这点与Hashtable不同。如果一定要排序HashTable输出,只能自己实现:

 

    //Hashtable sorting
    System.Collections.ArrayList akeys = new System.Collections.ArrayList(ht.Keys); //from Hashtable
    akeys.Sort(); //Sort by leading letter
    foreach (string skey in akeys)
    {
        Console.Write(skey + ":");
        Console.WriteLine(ht[skey]);
    }

 

HashTable与线程安全:

为了保证在多线程的情况下的线程同步访问安全,微软提供了自动线程同步的HashTable:

如果 HashTable要允许并发读但只能一个线程写, 要这么创建 HashTable实例:

    //Thread safe HashTable
    System.Collections.Hashtable htSyn = System.Collections.Hashtable.Synchronized(new System.Collections.Hashtable());

这样, 如果有多个线程并发的企图写HashTable里面的 item, 则同一时刻只能有一个线程写, 其余阻塞; 对读的线程则不受影响。

 

另外一种方法就是使用lock语句,但要lock的不是HashTable,而是其SyncRoot;虽然不推荐这种方法,但效果一样的,因为源代码就是这样实现的:

 //Thread safe private static System.Collections.Hashtable htCache = new System.Collections.Hashtable (); public static void AccessCache () { lock ( htCache.SyncRoot ) { htCache.Add ( "key", "value" ); //Be careful: don't use foreach to operation on the whole collection //Otherwise the collection won't be locked correctly even though indicated locked //--by MSDN } } //Is equivalent to 等同于 (lock is equivalent to Monitor.Enter and Exit() public static void AccessCache () { System.Threading.Monitor.Enter ( htCache.SyncRoot ); try { /* critical section */ htCache.Add ( "key", "value" ); //Be careful: don't use foreach to operation on the whole collection //Otherwise the collection won't be locked correctly even though indicated locked //--by MSDN } finally { System.Threading.Monitor.Exit ( htCache.SyncRoot ); } }

7. Stack类

栈,后进先出。push方法入栈,pop方法出栈。

System.Collections.Stack stack=new System.Collections.Stack(); stack.Push(1); stack.Push(2); System.Console.WriteLine(stack.Peek()); while(stack.Count>0) { System.Console.WriteLine(stack.Pop()); }   

 

8.Queue类

队列,先进先出。enqueue方法入队列,dequeue方法出队列。

System.Collections.Queue queue=new System.Collections.Queue(); queue.Enqueue(1); queue.Enqueue(2); System.Console.WriteLine(queue.Peek()); while(queue.Count>0) { System.Console.WriteLine(queue.Dequeue()); }   

本文来自CSDN博客http://blog.csdn.net/lanmao100/archive/2009/01/08/3735540.aspx

你可能感兴趣的:(C/C++/C#)