Python之——Numpy

转载请注明出处:http://blog.csdn.net/l1028386804/article/details/78945157

新年新气象,2018年的第一天,给大家带来一篇Python数据分析与挖掘领域中很重要的一个类库——Numpy,那么,我们就一起进入正题吧。

1、Numpy是什么

很简单,Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy、matplotlib一起使用。其实,list已经提供了类似于矩阵的表示形式,不过numpy为我们提供了更多的函数。如果接触过matlab、scilab,那么numpy很好入手。 在以下的代码示例中,总是先导入了numpy:

>>> import numpy as np
>>> print np.version.version
1.6.2

2、多维数组

多维数组的类型是:numpy.ndarray。

使用numpy.array方法

以list或tuple变量为参数产生一维数组:
>>> print np.array([1,2,3,4])
[1 2 3 4]
>>> print np.array((1.2,2,3,4))
[ 1.2  2.   3.   4. ]
>>> print type(np.array((1.2,2,3,4)))
以list或tuple变量为元素产生二维数组:

>>> print np.array([[1,2],[3,4]])
[[1 2]
 [3 4]]
生成数组的时候,可以指定数据类型,例如numpy.int32, numpy.int16, and numpy.float64等:

>>> print np.array((1.2,2,3,4), dtype=np.int32)
[1 2 3 4]

使用numpy.arange方法

>>> print np.arange(15)
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14]
>>> print type(np.arange(15))

>>> print np.arange(15).reshape(3,5)
[[ 0  1  2  3  4]
 [ 5  6  7  8  9]
 [10 11 12 13 14]]
>>> print type(np.arange(15).reshape(3,5))

使用numpy.linspace方法

例如,在从1到3中产生9个数:

>>> print np.linspace(1,3,9)
[ 1.    1.25  1.5   1.75  2.    2.25  2.5   2.75  3.  ]

使用numpy.zeros,numpy.ones,numpy.eye等方法可以构造特定的矩阵

>>> print np.zeros((3,4))
[[ 0.  0.  0.  0.]
 [ 0.  0.  0.  0.]
 [ 0.  0.  0.  0.]]
>>> print np.ones((3,4))
[[ 1.  1.  1.  1.]
 [ 1.  1.  1.  1.]
 [ 1.  1.  1.  1.]]
>>> print np.eye(3)
[[ 1.  0.  0.]
 [ 0.  1.  0.]
 [ 0.  0.  1.]]
创建一个三维数组:
>>> print np.zeros((2,2,2))
[[[ 0.  0.]
  [ 0.  0.]]

 [[ 0.  0.]
  [ 0.  0.]]]

获取数组的属性

>>> a = np.zeros((2,2,2))
>>> print a.ndim   #数组的维数
3
>>> print a.shape  #数组每一维的大小
(2, 2, 2)
>>> print a.size   #数组的元素数
8
>>> print a.dtype  #元素类型
float64
>>> print a.itemsize  #每个元素所占的字节数
8

数组索引,切片,赋值

示例:

>>> a = np.array( [[2,3,4],[5,6,7]] )
>>> print a
[[2 3 4]
 [5 6 7]]
>>> print a[1,2]
7
>>> print a[1,:]
[5 6 7]
>>> print a[1,1:2]
[6]
>>> a[1,:] = [8,9,10]
>>> print a
[[ 2  3  4]
 [ 8  9 10]]

使用for操作元素

>>> for x in np.linspace(1,3,3):
...     print x
...
1.0
2.0
3.0

基本的数组运算

先构造数组a、b:

>>> a = np.ones((2,2))
>>> b = np.eye(2)
>>> print a
[[ 1.  1.]
 [ 1.  1.]]
>>> print b
[[ 1.  0.]
 [ 0.  1.]]
数组的加减乘除:
>>> print a > 2
[[False False]
 [False False]]
>>> print a+b
[[ 2.  1.]
 [ 1.  2.]]
>>> print a-b
[[ 0.  1.]
 [ 1.  0.]]
>>> print b*2
[[ 2.  0.]
 [ 0.  2.]]
>>> print (a*2)*(b*2)
[[ 4.  0.]
 [ 0.  4.]]
>>> print b/(a*2)
[[ 0.5  0. ]
 [ 0.   0.5]]
>>> print (a*2)**4
[[ 16.  16.]
 [ 16.  16.]]
 使用数组对象自带的方法:
>>> a.sum()
4.0
>>> a.sum(axis=0)   #计算每一列(二维数组中类似于矩阵的列)的和
array([ 2.,  2.])
>>> a.min()
1.0
>>> a.max()
1.0
使用numpy下的方法:
>>> np.sin(a)
array([[ 0.84147098,  0.84147098],
       [ 0.84147098,  0.84147098]])
>>> np.max(a)
1.0
>>> np.floor(a)
array([[ 1.,  1.],
       [ 1.,  1.]])
>>> np.exp(a)
array([[ 2.71828183,  2.71828183],
       [ 2.71828183,  2.71828183]])
>>> np.dot(a,a)   ##矩阵乘法
array([[ 2.,  2.],
       [ 2.,  2.]])

合并数组

使用numpy下的vstack和hstack函数

>>> a = np.ones((2,2))
>>> b = np.eye(2)
>>> print np.vstack((a,b))
[[ 1.  1.]
 [ 1.  1.]
 [ 1.  0.]
 [ 0.  1.]]
>>> print np.hstack((a,b))
[[ 1.  1.  1.  0.]
 [ 1.  1.  0.  1.]]
看一下这两个函数有没有涉及到浅拷贝这种问题:
>>> c = np.hstack((a,b))
>>> print c
[[ 1.  1.  1.  0.]
 [ 1.  1.  0.  1.]]
>>> a[1,1] = 5
>>> b[1,1] = 5
>>> print c
[[ 1.  1.  1.  0.]
 [ 1.  1.  0.  1.]]
可以看到,a、b中元素的改变并未影响c。

深拷贝数组

数组对象自带了浅拷贝和深拷贝的方法,但是一般用深拷贝多一些:

>>> a = np.ones((2,2))
>>> b = a
>>> b is a
True
>>> c = a.copy()  #深拷贝
>>> c is a
False

基本的矩阵运算

转置:
>>> a = np.array([[1,0],[2,3]])
>>> print a
[[1 0]
 [2 3]]
>>> print a.transpose()
[[1 2]
 [0 3]]
>>> print np.trace(a)
4
numpy.linalg模块中有很多关于矩阵运算的方法:
>>> import numpy.linalg as nplg
特征值、特征向量:
>>> print nplg.eig(a)
(array([ 3.,  1.]), array([[ 0.        ,  0.70710678],
       [ 1.        , -0.70710678]]))

3、ndarray的创建

>>> import numpy as np
>>> a = np.array([2,3,4])
>>> a
array([2, 3, 4])
>>> a.dtype
dtype('int64')
>>> b = np.array([1.2, 3.5, 5.1])
>>> b.dtype
dtype('float64')
二维的数组
>>> b = np.array([(1.5,2,3), (4,5,6)])
>>> b
array([[ 1.5,  2. ,  3. ],
       [ 4. ,  5. ,  6. ]])
创建时指定类型
>>> c = np.array( [ [1,2], [3,4] ], dtype=complex )
>>> c
array([[ 1.+0.j,  2.+0.j],
       [ 3.+0.j,  4.+0.j]])
创建一些特殊的矩阵
>>> np.zeros( (3,4) )
array([[ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.]])
>>> np.ones( (2,3,4), dtype=np.int16 )                # dtype can also be specified
array([[[ 1, 1, 1, 1],
        [ 1, 1, 1, 1],
        [ 1, 1, 1, 1]],
       [[ 1, 1, 1, 1],
        [ 1, 1, 1, 1],
        [ 1, 1, 1, 1]]], dtype=int16)
>>> np.empty( (2,3) )                                 # uninitialized, output may vary
array([[  3.73603959e-262,   6.02658058e-154,   6.55490914e-260],
       [  5.30498948e-313,   3.14673309e-307,   1.00000000e+000]])
创建一些有特定规律的矩阵
>>> np.arange( 10, 30, 5 )
array([10, 15, 20, 25])
>>> np.arange( 0, 2, 0.3 )                 # it accepts float arguments
array([ 0. ,  0.3,  0.6,  0.9,  1.2,  1.5,  1.8])

>>> from numpy import pi
>>> np.linspace( 0, 2, 9 )                 # 9 numbers from 0 to 2
array([ 0.  ,  0.25,  0.5 ,  0.75,  1.  ,  1.25,  1.5 ,  1.75,  2.  ])
>>> x = np.linspace( 0, 2*pi, 100 )        # useful to evaluate function at lots of points
>>> f = np.sin(x)

4、一些基本的运算

加减乘除三角函数逻辑运算

>>> a = np.array( [20,30,40,50] )
>>> b = np.arange( 4 )
>>> b
array([0, 1, 2, 3])
>>> c = a-b
>>> c
array([20, 29, 38, 47])
>>> b**2
array([0, 1, 4, 9])
>>> 10*np.sin(a)
array([ 9.12945251, -9.88031624,  7.4511316 , -2.62374854])
>>> a<35
array([ True, True, False, False], dtype=bool)
矩阵运算
matlab中有.* ,./等等
但是在numpy中,如果使用+,-,×,/优先执行的是各个点之间的加减乘除法
如果两个矩阵(方阵)可既以元素之间对于运算,又能执行矩阵运算会优先执行元素之间的运算
>>> import numpy as np
>>> A = np.arange(10,20)
>>> B = np.arange(20,30)
>>> A + B
array([30, 32, 34, 36, 38, 40, 42, 44, 46, 48])
>>> A * B
array([200, 231, 264, 299, 336, 375, 416, 459, 504, 551])
>>> A / B
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
>>> B / A
array([2, 1, 1, 1, 1, 1, 1, 1, 1, 1])
如果需要执行矩阵运算,一般就是矩阵的乘法运算
>>> A = np.array([1,1,1,1])
>>> B = np.array([2,2,2,2])
>>> A.reshape(2,2)
array([[1, 1],
       [1, 1]])
>>> B.reshape(2,2)
array([[2, 2],
       [2, 2]])
>>> A * B
array([2, 2, 2, 2])
>>> np.dot(A,B)
8
>>> A.dot(B)
8
一些常用的全局函数
>>> B = np.arange(3)
>>> B
array([0, 1, 2])
>>> np.exp(B)
array([ 1.        ,  2.71828183,  7.3890561 ])
>>> np.sqrt(B)
array([ 0.        ,  1.        ,  1.41421356])
>>> C = np.array([2., -1., 4.])
>>> np.add(B, C)
array([ 2.,  0.,  6.])

5、矩阵的索引分片遍历

>>> a = np.arange(10)**3
>>> a
array([  0,   1,   8,  27,  64, 125, 216, 343, 512, 729])
>>> a[2]
8
>>> a[2:5]
array([ 8, 27, 64])
>>> a[:6:2] = -1000    # equivalent to a[0:6:2] = -1000; from start to position 6, exclusive, set every 2nd element to -1000
>>> a
array([-1000,     1, -1000,    27, -1000,   125,   216,   343,   512,   729])
>>> a[ : :-1]                                 # reversed a
array([  729,   512,   343,   216,   125, -1000,    27, -1000,     1, -1000])
>>> for i in a:
...     print(i**(1/3.))
...
nan
1.0
nan
3.0
nan
5.0
6.0
7.0
8.0
9.0
矩阵的遍历
>>> import numpy as np
>>> b = np.arange(16).reshape(4, 4)
>>> for row in b:
...  print(row)
... 
[0 1 2 3]
[4 5 6 7]
[ 8  9 10 11]
[12 13 14 15]
>>> for node in b.flat:
...  print(node)
... 
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

6、矩阵的特殊运算

改变矩阵形状--reshape

>>> a = np.floor(10 * np.random.random((3,4)))
>>> a
array([[ 6.,  5.,  1.,  5.],
       [ 5.,  5.,  8.,  9.],
       [ 5.,  5.,  9.,  7.]])
>>> a.ravel()
array([ 6.,  5.,  1.,  5.,  5.,  5.,  8.,  9.,  5.,  5.,  9.,  7.])
>>> a
array([[ 6.,  5.,  1.,  5.],
       [ 5.,  5.,  8.,  9.],
       [ 5.,  5.,  9.,  7.]])
resize和reshape的区别
resize会改变原来的矩阵,reshape并不会
>>> a
array([[ 6.,  5.,  1.,  5.],
       [ 5.,  5.,  8.,  9.],
       [ 5.,  5.,  9.,  7.]])
>>> a.reshape(2,-1)
array([[ 6.,  5.,  1.,  5.,  5.,  5.],
       [ 8.,  9.,  5.,  5.,  9.,  7.]])
>>> a
array([[ 6.,  5.,  1.,  5.],
       [ 5.,  5.,  8.,  9.],
       [ 5.,  5.,  9.,  7.]])
>>> a.resize(2,6)
>>> a
array([[ 6.,  5.,  1.,  5.,  5.,  5.],
       [ 8.,  9.,  5.,  5.,  9.,  7.]])
矩阵的合并
>>> a = np.floor(10*np.random.random((2,2)))
>>> a
array([[ 8.,  8.],
       [ 0.,  0.]])
>>> b = np.floor(10*np.random.random((2,2)))
>>> b
array([[ 1.,  8.],
       [ 0.,  4.]])
>>> np.vstack((a,b))
array([[ 8.,  8.],
       [ 0.,  0.],
       [ 1.,  8.],
       [ 0.,  4.]])
>>> np.hstack((a,b))
array([[ 8.,  8.,  1.,  8.],
       [ 0.,  0.,  0.,  4.]])


你可能感兴趣的:(Python)