- 大模型软件的多租户架构设计
AI天才研究院
AI人工智能与大数据ChatGPTjavapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
大模型软件的多租户架构设计关键词:大模型软件、多租户架构、设计、性能优化、安全性摘要:随着大数据和人工智能技术的迅猛发展,大模型软件在各个领域得到了广泛应用。然而,如何在大模型软件中实现高效的多租户架构设计,成为当前技术领域的一个关键挑战。本文将深入探讨大模型软件的多租户架构设计,包括其背景、核心概念、算法原理、系统架构、项目实战以及最佳实践等,旨在为开发者提供一套系统化、全面化的设计指南。设计过
- Eureka 为大数据领域服务治理带来的新思路
大数据洞察
大数据AI应用大数据与AI人工智能eureka大数据云原生ai
Eureka为大数据领域服务治理带来的新思路关键词:Eureka,大数据,服务治理,分布式系统,微服务摘要:本文深入探讨了Eureka为大数据领域服务治理带来的新思路。首先介绍了大数据领域服务治理的背景和现状,阐述了Eureka的核心概念与工作原理。接着详细分析了Eureka核心算法原理,结合Python代码进行说明,并给出相关数学模型和公式。通过项目实战案例,展示了Eureka在大数据服务治理中
- Flink在物联网实时大数据处理中的最佳实践
大数据洞察
大数据AI应用大数据与AI人工智能flink物联网strutsai
Flink在物联网实时大数据处理中的最佳实践关键词:Flink、物联网、实时大数据处理、最佳实践、数据流摘要:本文围绕Flink在物联网实时大数据处理中的最佳实践展开。首先介绍了相关背景知识,接着深入浅出地解释了Flink、物联网和实时大数据处理的核心概念以及它们之间的关系。然后详细阐述了Flink处理物联网数据的核心算法原理、数学模型和公式。通过实际项目案例,展示了开发环境搭建、代码实现和解读。
- OpenAI模型可解释性工具:理解AI的黑箱
AIGC应用创新大全
AI大模型与大数据技术AI人工智能与大数据应用开发MCP&Agent云算力网络人工智能百度ai
OpenAI模型可解释性工具:理解AI的黑箱关键词:OpenAI模型、可解释性工具、AI黑箱、模型理解、人工智能摘要:本文旨在深入探讨OpenAI模型可解释性工具,帮助大家理解AI这个“黑箱”。首先介绍了研究的背景、目的和预期读者,接着解释了核心概念,包括OpenAI模型、可解释性工具等,阐述了它们之间的关系。通过核心算法原理、数学模型和公式的讲解,让大家明白其内在机制。还给出了项目实战案例,包括
- 7.机器学习-十大算法之一拉索回归(Lasso)算法原理讲解
以山河作礼。
#机器学习算法机器学习算法回归
7.机器学习-十大算法之一拉索回归(Lasso)算法原理讲解一·摘要二·个人简介三·前言四·原理讲解五·算法流程六·代码实现6.1坐标下降法6.2最小角回归法七·第三方库实现7.1scikit-learn实现(坐标下降法):7.2scikit-learn实现(最小角回归法):一·摘要拉索回归(LassoRegression)是一种线性回归的正则化形式,它通过引入L1范数惩罚项来实现模型的稀疏性,从
- 机器学习算法之回归算法
福葫芦
机器学习回归算法
一、回归算法思维导图二、算法概念、原理、应用场景和实例代码1、线性回归1.1、概念线性回归算法是一种统计分析方法,用于确定两种或两种以上变量之间的定量关系。线性回归算法通过建立线性方程来预测因变量(y)和一个或多个自变量(x)之间的关系。其基本形式为y=wx+e,其中w是权重,x是自变量,e是误差项。1.2、算法原理线性回归算法的核心在于找到最佳的拟合直线,使得预测值与实际值之间的误差最小。
- lvs调度算法(10种)
beyoundout
lvs算法
一、静态算法(不考虑后端真实服务器的负载情况,按算法该谁就分配给谁)1.rr(RoundRobin)轮询算法算法原理:将外部请求按顺序轮流分配到集群中的真实服务器上,它均等地对待每一台服务器,而不管服务器上实际的连接数和系统负载举例:就像在食堂打饭,有三个打饭窗口。学生们排成一队从餐厅门口进入食堂,依次到第一个窗口、第二个窗口、第三个窗口打饭,后面的学生再从第一个窗口循环,每个窗口平等地接待学生,
- 14.优化算法之BFS解决FloodFill算法1
muyierfly
算法题算法宽度优先深度优先
0.FloodFill简介dfs:深度优先遍历(红色)bfs:宽度优先遍历1.图像渲染算法原理classSolution{int[]dx={0,0,1,-1};int[]dy={1,-1,0,0};publicint[][]floodFill(int[][]image,intsr,intsc,intcolor){intprev=image[sr][sc];//统计刚开始的颜⾊if(prev==co
- BFS 解决 FloodFill 算法(C++)
lim 鹏哥
刷题算法宽度优先c++
文章目录前言一、概念二、岛屿数量1.题目链接2.算法原理3.代码编写三、被围绕的区域1.题目链接2.算法原理3.代码编写总结前言一、概念BFS就是广度优先遍历,也就是层序遍历。FloodFill是指在数组中找出性质相同的连通块,并根据题目进行操作。二、岛屿数量1.题目链接200.岛屿数量2.算法原理遍历整个矩阵,每找到一块陆地,记录一次。我们怎末知道我们是否已经遍历过这个地方了呢??方法1:如果遍
- 后端开发:Spring Boot 的分布式缓存方案
大厂资深架构师
SpringBoot开发实战springboot分布式缓存ai
后端开发:SpringBoot的分布式缓存方案关键词:SpringBoot、分布式缓存、Redis、Caffeine、缓存策略、缓存失效摘要:本文深入探讨了在SpringBoot后端开发中分布式缓存方案的相关技术。首先介绍了分布式缓存在现代应用中的重要性及本文的研究范围,接着阐述了核心概念如分布式缓存的原理与架构,详细讲解了常用的核心算法原理及具体操作步骤,包括使用Python代码示例说明。通过数
- C++ | 基于PCL与CloudCompare的投影点密度法(DOPP)开发实战
河工点云智绘WangG
点云深处CloudCompare&PCL开发c++开发语言
一、算法原理与详细步骤1.算法原理DOPP是一种用于点云地面滤波的算法,通过将三维点云投影到二维平面,并分析投影点密度的分布特征来区分地面点与非地面点(如植被、建筑物等)。其核心思想是:地面点在投影平面上通常呈现均匀且低密度的分布,而建筑物点等非地面点则密度高。DOPP本质是二维密度场分析,将三维分离问题转化为二维空间密度统计问题。2.算法详细步骤(1)点云投影(Projection)将三维点云沿
- 揭秘FloodFill算法:图像填充利器
KENYCHEN奉孝
python实践大全算法python开发工具
FloodFill算法概述FloodFill是一种用于填充连通区域的算法,常用于图像处理、绘图工具(如“油漆桶”工具)和迷宫求解等场景。其核心思想是从一个起始点出发,向四周(四邻域或八邻域)扩展,直到遇到边界或满足停止条件。算法原理连通性定义:根据需求选择四邻域(上、下、左、右)或八邻域(包含对角线方向)作为填充方向。边界条件:填充需在指定区域内进行,遇到边界颜色或特定标记时停止。实现方法递归实现
- 新兴市场股市估值与智能电网网络安全技术的互动
SuperAGI2025
AI大模型应用开发宝典web安全网络安全ai
新兴市场股市估值与智能电网网络安全技术的互动关键词:新兴市场股市估值、智能电网网络安全技术、互动关系、金融市场、电力行业、风险评估、技术驱动摘要:本文旨在深入探讨新兴市场股市估值与智能电网网络安全技术之间的互动关系。通过对新兴市场股市估值的影响因素、智能电网网络安全技术的重要性及发展现状的分析,阐述两者相互作用的内在机制。利用数学模型和算法原理,结合实际案例,揭示这种互动对金融市场和电力行业的影响
- Flutter低代码开发:使用工具加速应用构建
移动开发前沿
flutter低代码rxjavaai
Flutter低代码开发:使用工具加速应用构建关键词:Flutter、低代码开发、应用构建、开发工具、加速开发摘要:本文深入探讨了Flutter低代码开发的相关内容。首先介绍了低代码开发的背景和在Flutter中的应用目的,接着详细解释了Flutter、低代码开发等核心概念及其相互关系。通过具体的算法原理、数学模型和项目实战案例,展示了如何利用低代码工具加速Flutter应用的构建。还探讨了其实际
- AI人工智能领域多模态大模型的发展历程回顾
AI智能探索者
AIAgent智能体开发实战人工智能ai
AI人工智能领域多模态大模型的发展历程回顾关键词:AI人工智能、多模态大模型、发展历程、技术演变、应用场景摘要:本文旨在全面回顾AI人工智能领域多模态大模型的发展历程。通过对不同阶段核心概念、算法原理、数学模型等方面的深入剖析,结合实际项目案例,探讨其在各个领域的应用场景。同时,推荐相关的学习资源、开发工具和重要论文著作,最后总结多模态大模型的未来发展趋势与挑战,并对常见问题进行解答。1.背景介绍
- Golang 数据库缓存策略:减少 SQL 查询次数
Golang数据库缓存策略:减少SQL查询次数关键词:Golang、数据库缓存、SQL查询次数、缓存策略、性能优化摘要:本文主要探讨了在Golang中使用数据库缓存策略来减少SQL查询次数的相关技术。通过深入讲解缓存的核心概念、算法原理、实际应用场景等内容,帮助读者理解如何利用缓存优化数据库性能。同时,结合具体的代码案例,详细展示了在Golang中实现缓存策略的方法,最后分析了未来的发展趋势与面临
- 操作系统休眠功能的用户体验设计
操作系统内核探秘
ux服务器负载均衡ai
操作系统休眠功能的用户体验设计关键词:操作系统、休眠功能、用户体验设计、响应速度、能源管理摘要:本文聚焦于操作系统休眠功能的用户体验设计,首先介绍了该设计的背景,涵盖目的、预期读者等内容。接着详细解释了与休眠功能相关的核心概念及其联系,通过生动的比喻让读者轻松理解。阐述了休眠功能背后的核心算法原理和具体操作步骤,给出了数学模型及公式。还通过项目实战展示了代码实现与解读。之后探讨了实际应用场景、推荐
- 探索AI人工智能中遗传算法的进化奥秘
AI学长带你学AI
人工智能ai
探索AI人工智能中遗传算法的进化奥秘关键词:遗传算法、自然选择、基因编码、适应度函数、群体进化、交叉变异、优化问题摘要:本文将用生物进化视角解读人工智能中的遗传算法原理。通过达尔文进化论的生活化比喻,结合Python代码实例演示如何模拟基因遗传、自然选择等过程,揭示遗传算法在路径规划、参数优化等场景的应用奥秘。最后探讨遗传算法的局限性与未来发展方向。背景介绍目的和范围本文旨在用通俗易懂的方式解析遗
- 深度剖析AI人工智能领域多模态大模型
AI学长带你学AI
AI人工智能与大数据应用开发AI应用开发高级指南人工智能ai
深度剖析AI人工智能领域多模态大模型关键词:AI人工智能、多模态大模型、模型架构、算法原理、应用场景摘要:本文旨在对AI人工智能领域的多模态大模型进行深度剖析。首先介绍多模态大模型的背景知识,包括目的、预期读者等。接着阐述核心概念,分析其架构和原理,并给出相应的流程图。通过Python代码详细讲解核心算法原理和具体操作步骤,同时用数学模型和公式进一步阐释。在项目实战部分,给出实际案例及详细代码解读
- Open AI在AI人工智能领域的创新之路
AI学长带你学AI
AI人工智能与大数据应用开发AI应用开发高级指南人工智能ai
OpenAI在AI人工智能领域的创新之路关键词:OpenAI、人工智能、创新之路、技术突破、应用场景摘要:本文深入探讨了OpenAI在AI人工智能领域的创新之路。首先介绍了OpenAI的背景信息,包括其成立目的、发展历程等。接着详细阐述了OpenAI的核心概念,如强化学习、生成式对抗网络等,并通过示意图和流程图展示其原理和架构。然后讲解了相关核心算法原理,结合Python代码进行具体说明。同时,给
- 探索AI人工智能领域Actor - Critic的无限潜力
探索AI人工智能领域Actor-Critic的无限潜力关键词:AI人工智能、Actor-Critic、强化学习、策略网络、价值网络摘要:本文将深入探索AI人工智能领域中Actor-Critic方法的无限潜力。我们会先介绍其背景知识,接着用通俗易懂的方式解释核心概念,包括Actor和Critic的含义及它们之间的关系,然后阐述其核心算法原理和具体操作步骤,还会给出数学模型和公式并举例说明。通过项目实
- OpenCV特征点提取算法orb、surf、sift对比
点云SLAM
图形图像处理ORB算法SIFT算法人工智能计算机视觉算法
下面是OpenCV中三种常用特征点提取算法:ORB、SURF和SIFT的详细对比,从算法原理、性能、使用限制和适用场景多维度进行总结,帮助大家在实际项目中合理选择。一览表:ORBvs.SURFvs.SIFT属性/算法ORBSURFSIFT全称OrientedFASTandRotatedBRIEFSpeededUpRobustFeaturesScale-InvariantFeatureTransfo
- Python Gradio:快速搭建人脸识别应用
Python编程之道
Python人工智能与大数据Python编程之道python开发语言ai
PythonGradio:快速搭建人脸识别应用关键词:Python,Gradio,人脸识别,深度学习,计算机视觉,交互式应用,模型部署摘要:本文详细介绍了如何使用Python的Gradio库快速搭建一个交互式的人脸识别应用。我们将从基础概念出发,逐步讲解人脸识别的核心算法原理、Gradio的界面设计方法,并通过完整的项目实战演示如何将深度学习模型部署为可交互的Web应用。文章包含详细的代码实现、数
- React Native iOS 全栈开发:跨平台开发的最佳实践
AI天才研究院
ChatGPT计算AI人工智能与大数据reactnativeiosreact.jsai
ReactNativeiOS全栈开发:跨平台开发的最佳实践关键词:ReactNative、iOS开发、跨平台开发、全栈开发、最佳实践摘要:本文围绕ReactNativeiOS全栈开发展开,详细探讨了跨平台开发的最佳实践。从核心概念入手,介绍了ReactNative和iOS开发相关知识,阐述它们之间的联系。深入讲解核心算法原理和具体操作步骤,通过数学模型和公式进一步剖析。提供项目实战案例,包含开发环
- 云原生环境里Nginx的故障排查思路
AI云原生与云计算技术学院
AI云原生与云计算云原生nginx运维ai
云原生环境里Nginx的故障排查思路关键词:云原生、Nginx、故障排查、容器化、Kubernetes摘要:本文聚焦于云原生环境下Nginx的故障排查思路。随着云原生技术的广泛应用,Nginx作为常用的高性能Web服务器和反向代理服务器,在容器化和编排的环境中面临着新的故障场景和挑战。文章首先介绍云原生环境及Nginx的相关背景知识,接着阐述核心概念和联系,详细讲解故障排查的核心算法原理与操作步骤
- 谷歌云(GCP)入门指南:从零开始搭建你的第一个云应用
AI云原生与云计算技术学院
AI云原生与云计算perl服务器网络ai
谷歌云(GCP)入门指南:从零开始搭建你的第一个云应用关键词:谷歌云、GCP、云应用搭建、入门指南、云计算摘要:本文旨在为初学者提供一份全面的谷歌云(GCP)入门指南,详细介绍如何从零开始搭建第一个云应用。通过逐步分析推理,我们将涵盖背景知识、核心概念、算法原理、数学模型、项目实战、实际应用场景、工具资源推荐等多个方面,帮助读者深入理解GCP的使用方法和搭建云应用的流程,为后续的云计算实践打下坚实
- AI 人工智能与 Copilot 碰撞出的火花
AI天才研究院
AI大模型企业级应用开发实战人工智能copilotai
AI人工智能与Copilot碰撞出的火花关键词:AI人工智能、Copilot、代码辅助、智能编程、人机协作、软件开发、技术创新摘要:本文深入探讨了AI人工智能与Copilot碰撞所产生的一系列效应。首先介绍了相关背景,包括目的、预期读者、文档结构和术语表。接着阐述了核心概念与联系,展示了其原理和架构的示意图及流程图。详细讲解了核心算法原理和具体操作步骤,并通过Python代码进行说明。同时给出了数
- 冒泡、选择、插入排序:三大基础排序算法深度解析(C语言实现)
xienda
算法排序算法数据结构
在算法学习道路上,排序算法是每位程序员必须掌握的基石。本文将深入解析冒泡排序、选择排序和插入排序这三种基础排序算法,通过C语言代码实现和对比分析,帮助读者彻底理解它们的差异与应用场景。算法原理与代码实现1.冒泡排序(BubbleSort)工作原理:通过重复比较相邻元素,将较大元素逐步"冒泡"到数组末尾。voidbubbleSort(intarr[],intn){ for(inti=0;iarr[
- Python 实战人工智能数学基础:推荐系统应用
AI天才研究院
AI大模型企业级应用开发实战大数据人工智能语言模型JavaPython架构设计
作者:禅与计算机程序设计艺术文章目录1.背景介绍2.核心概念与联系2.1用户画像2.2相似性计算2.2.1基于物品的相似度2.2.2基于用户的相似度2.3协同过滤算法2.3.1基于用户的协同过滤算法2.3.2基于物品的协同过滤算法2.3.3基于上下文的协同过滤算法3.核心算法原理和具体操作步骤以及数学模型公式详细讲解3.1基于用户的协同过滤算法3.2基于物品的协同过滤算法3.3混合协同过滤算法3.
- JavaScript 在前端 UI 框架中的应用与选型
大厂前端小白菜
前端开发实战前端javascriptuiai
JavaScript在前端UI框架中的应用与选型关键词:JavaScript、前端UI框架、应用、选型、React、Vue.js、Angular摘要:本文深入探讨了JavaScript在前端UI框架中的应用与选型问题。首先介绍了前端UI框架的背景知识,包括目的、预期读者、文档结构等。接着阐述了核心概念,分析了JavaScript与前端UI框架的联系。通过具体的算法原理和操作步骤,结合Python代
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo