本文以user.log、goods.log两张表的合并来举例。
class JoinMRMapper extends Mapper<LongWritable, Text, Text, Text> { @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { /*获取文件切片*/ FileSplit fileSplit = (FileSplit) context.getInputSplit(); /*获取文件的文件名*/ String name = fileSplit.getPath().getName(); String[] splits = value.toString().split(","); /*判断获取的文件切片是属于user.log文件还是goods.log文件的*/ if (name.equals("user.log")) { String userID = splits[0]; String userName = splits[1]; String userAge = splits[2]; /*此处value拼接上name是为了在reduce阶段进行区分文件所属哪个log*/ context.write(new Text(userID), new Text(name + "-" + userName + "," + userAge)); } else { String goodID = splits[0]; String userID = splits[1]; String goodPrice = splits[2]; String ts = splits[3]; context.write(new Text(userID), new Text(name + "-" + goodID + "," + goodPrice + "," + ts)); } } }2、编写reducer类
class JoinMRReducer extends Reducer<Text, Text, Text, NullWritable> { @Override protected void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException { List<String> userList = new ArrayList<>(); List<String> goodList = new ArrayList<>(); for (Text t : values) { /*获取name,根据name判断得到的切片属于哪个文件,然后添加到对应的list列表中*/ String[] splits = t.toString().split("-"); if (splits[0].equals("user.log")) { userList.add(splits[1]); } else { goodList.add(splits[1]); } } /*获取列表长度*/ int userLength = userList.size(); int goodLength = goodList.size(); for (int i = 0; i < userLength; i++) { for (int j = 0; j < goodLength; j++) { /*key值为用户ID,按照循环将两张表进行join*/ String keyout = key.toString() + "," + (userList.get(i) + "," + goodList.get(j)); context.write(new Text(keyout), NullWritable.get()); } } } }3、编写driver类
public class JoinMR { public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException { /*配置*/ Configuration conf = new Configuration(); conf.set("fs.defaultFS", "hdfs://hadoop01:9000"); System.setProperty("HADOOP_USER_NAME", "hadoop"); /*job实例化*/ Job job = Job.getInstance(conf); job.setJarByClass(JoinMR.class); /*部署map-reduce组件*/ job.setMapperClass(JoinMRMapper.class); job.setReducerClass(JoinMRReducer.class); /*设置map输出的k-v类型*/ job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(Text.class); /*最后输出的k-v格式类型*/ job.setOutputKeyClass(Text.class); job.setOutputValueClass(NullWritable.class); /*设置任务数*//* job.setNumReduceTasks(6);*/ /*输入输出路径*/ Path inputUser = new Path("/hadoop/input/user.log"); Path inputGoods = new Path("/hadoop/input/goods.log"); Path output = new Path("/hadoop/output/user_goods"); /*去除重复的文件夹*/ FileSystem fs = FileSystem.get(conf); if (fs.exists(output)) { fs.delete(output, true); } /*FileInputFormat.addInputPath兼容FileInputFormat.setInputPath,通常用addInputPath*/ FileInputFormat.addInputPath(job, inputUser); FileInputFormat.addInputPath(job, inputGoods); FileOutputFormat.setOutputPath(job, output); /*判断任务是否结束*/ boolean b = job.waitForCompletion(true); System.exit(b ? 0 : 1); } }
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
package join;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
public class JoinMR {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
/*配置*/
Configuration conf = new Configuration();
conf.set("fs.defaultFS", "hdfs://hadoop01:9000");
System.setProperty("HADOOP_USER_NAME", "hadoop");
/*job实例化*/
Job job = Job.getInstance(conf);
job.setJarByClass(JoinMR.class);
/*部署map-reduce组件*/
job.setMapperClass(JoinMRMapper.class);
job.setReducerClass(JoinMRReducer.class);
/*设置map输出的k-v类型*/
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
/*最后输出的k-v格式类型*/
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(NullWritable.class);
/*设置任务数*//*
job.setNumReduceTasks(6);*/
/*输入输出路径*/
Path inputUser = new Path("/hadoop/input/user.log");
Path inputGoods = new Path("/hadoop/input/goods.log");
Path output = new Path("/hadoop/output/user_goods");
/*去除重复的文件夹*/
FileSystem fs = FileSystem.get(conf);
if (fs.exists(output)) {
fs.delete(output, true);
}
/*FileInputFormat.addInputPath兼容FileInputFormat.setInputPath,通常用addInputPath*/
FileInputFormat.addInputPath(job, inputUser);
FileInputFormat.addInputPath(job, inputGoods);
FileOutputFormat.setOutputPath(job, output);
/*判断任务是否结束*/
boolean b = job.waitForCompletion(true);
System.exit(b ? 0 : 1);
}
}
class JoinMRMapper extends Mapper<LongWritable, Text, Text, Text> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
/*获取文件切片*/
FileSplit fileSplit = (FileSplit) context.getInputSplit();
/*获取文件的文件名*/
String name = fileSplit.getPath().getName();
String[] splits = value.toString().split(",");
/*判断获取的文件切片是属于user.log文件还是goods.log文件的*/
if (name.equals("user.log")) {
String userID = splits[0];
String userName = splits[1];
String userAge = splits[2];
/*此处value拼接上name是为了在reduce阶段进行区分文件所属哪个log*/
context.write(new Text(userID), new Text(name + "-" + userName + "," + userAge));
} else {
String goodID = splits[0];
String userID = splits[1];
String goodPrice = splits[2];
String ts = splits[3];
context.write(new Text(userID), new Text(name + "-" + goodID + "," + goodPrice + "," + ts));
}
}
}
class JoinMRReducer extends Reducer<Text, Text, Text, NullWritable> {
@Override
protected void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
List<String> userList = new ArrayList<>();
List<String> goodList = new ArrayList<>();
for (Text t : values) {
/*获取name,根据name判断得到的切片属于哪个文件,然后添加到对应的list列表中*/
String[] splits = t.toString().split("-");
if (splits[0].equals("user.log")) {
userList.add(splits[1]);
} else {
goodList.add(splits[1]);
}
}
/*获取列表长度*/
int userLength = userList.size();
int goodLength = goodList.size();
for (int i = 0; i < userLength; i++) {
for (int j = 0; j < goodLength; j++) {
/*key值为用户ID,按照循环将两张表进行join*/
String keyout = key.toString() + "," + (userList.get(i) + "," + goodList.get(j));
context.write(new Text(keyout), NullWritable.get());
}
}
}
}
18/05/23 11:18:14 INFO mapreduce.Job: map 100% reduce 0%
18/05/23 11:18:14 INFO mapred.Task: Using ResourceCalculatorProcessTree : org.apache.hadoop.yarn.util.WindowsBasedProcessTree@118b3f88
18/05/23 11:18:14 INFO mapred.ReduceTask: Using ShuffleConsumerPlugin: org.apache.hadoop.mapreduce.task.reduce.Shuffle@2580b60e
18/05/23 11:18:14 INFO reduce.MergeManagerImpl: MergerManager: memoryLimit=1294781568, maxSingleShuffleLimit=323695392, mergeThreshold=854555840, ioSortFactor=10, memToMemMergeOutputsThreshold=10
18/05/23 11:18:14 INFO reduce.EventFetcher: attempt_local1763534138_0001_r_000000_0 Thread started: EventFetcher for fetching Map Completion Events
18/05/23 11:18:14 INFO reduce.LocalFetcher: localfetcher#1 about to shuffle output of map attempt_local1763534138_0001_m_000001_0 decomp: 218030 len: 218034 to MEMORY
18/05/23 11:18:14 INFO reduce.InMemoryMapOutput: Read 218030 bytes from map-output for attempt_local1763534138_0001_m_000001_0
18/05/23 11:18:14 INFO reduce.MergeManagerImpl: closeInMemoryFile -> map-output of size: 218030, inMemoryMapOutputs.size() -> 1, commitMemory -> 0, usedMemory ->218030
18/05/23 11:18:14 INFO reduce.LocalFetcher: localfetcher#1 about to shuffle output of map attempt_local1763534138_0001_m_000000_0 decomp: 37596850 len: 37596854 to MEMORY
18/05/23 11:18:14 INFO reduce.InMemoryMapOutput: Read 37596850 bytes from map-output for attempt_local1763534138_0001_m_000000_0
18/05/23 11:18:14 INFO reduce.MergeManagerImpl: closeInMemoryFile -> map-output of size: 37596850, inMemoryMapOutputs.size() -> 2, commitMemory -> 218030, usedMemory ->37814880
18/05/23 11:18:14 INFO reduce.EventFetcher: EventFetcher is interrupted.. Returning
18/05/23 11:18:14 INFO mapred.LocalJobRunner: 2 / 2 copied.
18/05/23 11:18:14 INFO reduce.MergeManagerImpl: finalMerge called with 2 in-memory map-outputs and 0 on-disk map-outputs
18/05/23 11:18:14 INFO mapred.Merger: Merging 2 sorted segments
18/05/23 11:18:14 INFO mapred.Merger: Down to the last merge-pass, with 2 segments left of total size: 37814872 bytes
18/05/23 11:18:15 INFO reduce.MergeManagerImpl: Merged 2 segments, 37814880 bytes to disk to satisfy reduce memory limit
18/05/23 11:18:15 INFO reduce.MergeManagerImpl: Merging 1 files, 37814882 bytes from disk
18/05/23 11:18:15 INFO reduce.MergeManagerImpl: Merging 0 segments, 0 bytes from memory into reduce
18/05/23 11:18:15 INFO mapred.Merger: Merging 1 sorted segments
18/05/23 11:18:15 INFO mapred.Merger: Down to the last merge-pass, with 1 segments left of total size: 37814874 bytes
18/05/23 11:18:15 INFO mapred.LocalJobRunner: 2 / 2 copied.
18/05/23 11:18:15 INFO Configuration.deprecation: mapred.skip.on is deprecated. Instead, use mapreduce.job.skiprecords
18/05/23 11:18:20 INFO mapred.LocalJobRunner: reduce > reduce
18/05/23 11:18:20 INFO mapreduce.Job: map 100% reduce 90%
18/05/23 11:18:22 INFO mapred.Task: Task:attempt_local1763534138_0001_r_000000_0 is done. And is in the process of committing
18/05/23 11:18:22 INFO mapred.LocalJobRunner: reduce > reduce
18/05/23 11:18:22 INFO mapred.Task: Task attempt_local1763534138_0001_r_000000_0 is allowed to commit now
18/05/23 11:18:22 INFO output.FileOutputCommitter: Saved output of task 'attempt_local1763534138_0001_r_000000_0' to hdfs://hadoop01:9000/hadoop/output/movie1/_temporary/0/task_local1763534138_0001_r_000000
18/05/23 11:18:22 INFO mapred.LocalJobRunner: reduce > reduce
18/05/23 11:18:22 INFO mapred.Task: Task 'attempt_local1763534138_0001_r_000000_0' done.
18/05/23 11:18:22 INFO mapred.LocalJobRunner: Finishing task: attempt_local1763534138_0001_r_000000_0
18/05/23 11:18:22 INFO mapred.LocalJobRunner: reduce task executor complete.
18/05/23 11:18:22 INFO mapreduce.Job: map 100% reduce 100%
18/05/23 11:18:22 INFO mapreduce.Job: Job job_local1763534138_0001 completed successfully
18/05/23 11:18:22 INFO mapreduce.Job: Counters: 38
File System Counters
FILE: Number of bytes read=75631291
FILE: Number of bytes written=151812342
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=74125257
HDFS: Number of bytes written=64365925
HDFS: Number of read operations=31
HDFS: Number of large read operations=0
HDFS: Number of write operations=8
Map-Reduce Framework
Map input records=1004092
Map output records=1004092
Map output bytes=35806692
Map output materialized bytes=37814888
Input split bytes=219
Combine input records=0
Combine output records=0
Reduce input groups=3883
Reduce shuffle bytes=37814888
Reduce input records=1004092
Reduce output records=1000209
Spilled Records=2008184
Shuffled Maps =2
Failed Shuffles=0
Merged Map outputs=2
GC time elapsed (ms)=59
CPU time spent (ms)=0
Physical memory (bytes) snapshot=0
Virtual memory (bytes) snapshot=0
Total committed heap usage (bytes)=1905786880
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=24765563
File Output Format Counters
Bytes Written=64365925