转载自:
https://blog.csdn.net/xwc35047/article/details/71039830
http://www.importnew.com/26541.html
https://www.cnblogs.com/dreamfly2016/p/5720526.html
(重点)https://www.ibm.com/developerworks/cn/analytics/library/ba-cn-apache-spark-memory-management/index.html
==========================================================================================
目前Zeppelin已经上线一段时间,Spark作为底层SQL执行引擎,需要进行整体性能调优,来提高SQL查询效率。本文主要给出调优的结论,因为涉及参数很多,故没有很细粒度调优,但整体调优方向是可以得出的。
环境:服务器600+,spark 2.0.2,hadoop 2.6.0
调优随机选取线上9条SQL,表横轴是调优测试项目,测试在集群空闲情况下进行,后一个的测试都是叠加前面测试参数。从数据可参数经过调优,理想环境下性能可提高50%到300%
1)一图概览
2) Spark集群优化——数据本地性
3)Spark集群优化——存储格式选择
4)Spark参数优化——计算资源
5) Spark参数优化——并行度
6)Spark参数优化——offheap内存
7)Spark参数优化——大小表join
8)Spark参数优化——其他
9) Spark参数优化——shuffle过程
10)Spark代码优化——RDD复用
11)Spark代码优化——选择合适算子
12) Spark代码优化——shuffle算子并行度调优
13)Spark代码优化——数据倾斜
14)Spark代码优化——优化数据结构
15)Spark代码优化——使用DateSet API
16)Spark代码优化——使用DateSet API
17) 目前Spark的瓶颈——内存
18) 目前Spark的瓶颈——内存
调优参数虽名目多样,但最终目的是提高CPU利用率,降低带宽IO,提高缓存命中率,减少数据落盘。
不同数据量的最优参数都不相同,调优目的是让参数适应数据的量级以最大程度利用资源,经调优发现并不是所有参数有效,有的参数的效果也不明显,最后折中推荐如下调优参数以适应绝大多数SQL情况,个别SQL需要用户单独调参优化。(以下参数主要用于Spark Thriftserver,仅供参考)
参数 | 含义 | 默认值 | 调优值 |
---|---|---|---|
spark.sql.shuffle.partitions | 并发度 | 200 | 800 |
spark.executor.overhead.memory | executor堆外内存 | 512m | 1.5g |
spark.executor.memory | executor堆内存 | 1g | 9g |
spark.executor.cores | executor拥有的core数 | 1 | 3 |
spark.locality.wait.process | 进程内等待时间 | 3 | 3 |
spark.locality.wait.node | 节点内等待时间 | 3 | 8 |
spark.locality.wait.rack | 机架内等待时间 | 3 | 5 |
spark.rpc.askTimeout | rpc超时时间 | 10 | 1000 |
spark.sql.autoBroadcastJoinThreshold | 小表需要broadcast的大小阈值 | 10485760 | 33554432 |
spark.sql.hive.convertCTAS | 创建表是否使用默认格式 | false | true |
spark.sql.sources.default | 默认数据源格式 | parquet | orc |
spark.sql.files.openCostInBytes | 小文件合并阈值 | 4194304 | 6291456 |
spark.sql.orc.filterPushdown | orc格式表是否谓词下推 | false | true |
spark.shuffle.sort.bypassMergeThreshold | shuffle read task阈值,小于该值则shuffle write过程不进行排序 | 200 | 600 |
spark.shuffle.io.retryWait | 每次重试拉取数据的等待间隔 | 5 | 30 |
spark.shuffle.io.maxRetries | 拉取数据重试次数 | 3 | 10 |
=========================================================================================
上周四接到反馈,集群部分 spark 任务执行很慢,且经常出错,参数改来改去怎么都无法优化其性能和解决频繁随机报错的问题。
看了下任务的历史运行情况,平均时间 3h 左右,而且极其不稳定,偶尔还会报错:
任务的运行时间跟什么有关?
在有限的计算下,job的运行时长和数据量大小正相关,在本例中,数据量大小基本稳定,可以排除是日志量级波动导致的问题:
比如代码里重复创建、初始化变量、环境、RDD资源等,随意持久化数据等,大量使用 shuffle 算子等,比如reduceByKey、join等算子。
在这份100行的代码里,一共有 3 次 shuffle 操作,任务被 spark driver 切分成了 4 个 stage 串行执行,代码位置如下:
咱们需要做的就是从算法和业务角度尽可能减少 shuffle 和 stage,提升并行计算性能,这块是个大的话题,本次不展开详述。
这块技巧相对通用,咱们来看看之前的核心参数设置:
num-executors=10 || 20 ,executor-cores=1 || 2, executor-memory= 10 || 20,driver-memory=20,spark.default.parallelism=64
假设咱们的 spark 队列资源情况如下:
memory=1T,cores=400
参数怎么设置在这里就有些技巧了,首先得明白 spark 资源的分配和使用原理:
在默认的非动态资源分配场景下, spark 是预申请资源,任务还没起跑就独占资源,一直到整个 job 所有 task 结束,比如你跳板机起了一个 spark-shell 一直没退出,也没执行任务,那也会一直占有所有申请的资源。(如果设置了 num-executors,动态资源分配会失效)
注意上面这句话,spark 的资源使用分配方式和 mapreduce/hive 是有很大差别的,如果不理解这个问题就会在参数设置上引发其它问题。
比如 executor-cores 设多少合适?少了任务并行度不行,多了会把整个队列资源独占耗光,其他同学的任务都无法执行,比如上面那个任务,在 num-executors=20 executor-cores=1 executor-memory= 10 的情况下,会独占20个cores,200G内存,一直持续3个小时。
那针对本case中的任务,结合咱们现有的资源,如何设置这 5 个核心参数呢?
1) executor_cores*num_executors 不宜太小或太大!一般不超过总队列 cores 的 25%,比如队列总 cores 400,最大不要超过100,最小不建议低于 40,除非日志量很小。
2) executor_cores 不宜为1!否则 work 进程中线程数过少,一般 2~4 为宜。
3) executor_memory 一般 6~10g 为宜,最大不超过 20G,否则会导致 GC 代价过高,或资源浪费严重。
4) spark_parallelism 一般为 executor_cores*num_executors 的 1~4 倍,系统默认值 64,不设置的话会导致 task 很多的时候被分批串行执行,或大量 cores 空闲,资源浪费严重。
5) driver-memory 早前有同学设置 20G,其实 driver 不做任何计算和存储,只是下发任务与yarn资源管理器和task交互,除非你是 spark-shell,否则一般 1-2g 就够了。
Spark Memory Manager:
6)spark.shuffle.memoryFraction(默认 0.2) ,也叫 ExecutionMemory。这片内存区域是为了解决 shuffles,joins, sorts and aggregations 过程中为了避免频繁IO需要的buffer。如果你的程序有大量这类操作可以适当调高。
7)spark.storage.memoryFraction(默认0.6),也叫 StorageMemory。这片内存区域是为了解决 block cache(就是你显示调用dd.cache, rdd.persist等方法), 还有就是broadcasts,以及task results的存储。可以通过参数,如果你大量调用了持久化操作或广播变量,那可以适当调高它。
8)OtherMemory,给系统预留的,因为程序本身运行也是需要内存的, (默认为0.2)。Other memory在1.6也做了调整,保证至少有300m可用。你也可以手动设置 spark.testing.reservedMemory . 然后把实际可用内存减去这个reservedMemory得到 usableMemory。 ExecutionMemory 和 StorageMemory 会共享usableMemory * 0.75的内存。0.75可以通过 新参数 spark.memory.fraction 设置。目前spark.memory.storageFraction 默认值是0.5,所以ExecutionMemory,StorageMemory默认情况是均分上面提到的可用内存的。
例如,如果需要加载大的字典文件,可以增大executor中 StorageMemory 的大小,这样就可以避免全局字典换入换出,减少GC,在这种情况下,我们相当于用内存资源来换取了执行效率。
最终优化后的参数如下:
效果如下:
最后的任务还需要一个小时,那这一个小时究竟耗在哪了?按我的经验和理解,一般单天的数据如果不是太大,不涉及复杂迭代计算,不应该超过半小时才对。
由于集群的 Spark History Server 还没安装调试好,没法通过 spark web UI 查看历史任务的可视化执行细节,所以我写了个小脚本分析了下前后具体的计算耗时信息,可以一目了然的看到是哪个 stage 的问题,有针对性的优化。
可以看到优化后的瓶颈主要在最后写 redis 的阶段,要把 60G 的数据,25亿条结果写入 redis,这对 redis 来说是个挑战,这个就只能从写入数据量和 kv 数据库选型两个角度来优化了。
当然,优化和高性能是个很泛、很有挑战的话题,除了前面提到的代码、参数层面,还有怎样防止或减少数据倾斜等,这都需要针对具体的场景和日志来分析,此处也不展开。
对于初学者来说 spark 貌似无所不能而且高性能,甚至在某些博客、技术人眼里 spark 取代 mapreduce、hive、storm 分分钟的事情,是大数据批处理、机器学习、实时处理等领域的银弹。但事实确实如此吗?
从上面这个 case 可以看到,会用 spark、会调 API 和能用好 spark,用的恰到好处是两码事,这要求咱们不仅了解其原理,还要了解业务场景,将合适的技术方案、工具和合适的业务场景结合——这世上本就不存在什么银弹。。。
说道 spark 的性能,想要它快,就得充分利用好系统资源,尤其是内存和CPU:核心思想就是能用内存 cache 就别 spill 落磁盘,CPU 能并行就别串行,数据能 local 就别 shuffle。
===========================================================================================
Spark从1.6.0版本开始,内存管理模块就发生了改变,旧版本的内存管理模块是实现了StaticMemoryManager 类,现在被称为"legacy"。"Legacy"模式默认被置为不可用,这就意味着当你用Spark1.5.x和Spark1.6.x运行相同的代码会有不同的结果,应当多加注意。考虑的兼容性,可以通过设置spark.memory.useLegacyMode为可用,默认是false.
这篇文章介绍自spark1.6.0版本后的新的内存管理模型,它实现的是UnifiedMemoryManager类。
在这张图中你可以看到三个主要内存区域。
1.Reserved Memory.这部分内存是被系统预留的,它的大小也是被硬编码的。在Spark1.6.0版本,它的大小是300MB,这就意味着这部分内存不能计入Spark内存计算,除非重新编译源码或设置spark.testing.reservedMemory,它的大小是不可改变的,因为park.testing.reservedMemory只是一个测试参数所以在生产中不推荐使用。注意,这部分内存只是被称为“Reserved",实际上它不会被spark用来干任何事情 ,但是它限制了你在spark中可分配的内存大小。即使你想将全部JVM堆内存用于spark缓存数据,也不能使用这部分空闲内存(不是真的就浪费了,其实它存储了Spark的一些内部对象)。供参考,如果你不能为executor至少1.5 * Reserved Memory = 450MB的堆内存,任务将会失败并提示”please use larger heap size“的错误信息。
2.User Memory.这部分内存是分配Spark Memory内存之后的部分,而且这部分用来干什么完全取决于你。你可以用来存储RDD transformations过程使用的数据结构。例如,你可以通过mapPartitions transformation 重写Spark aggregation,mapPartitions transformations 保存hash表保证aggregation运行。这部分数据就保存在User Memory。再次强调,这是User Memory它完全由你决定存什么、如何使用,Spark完全不会管你拿这块区域用来做什么,怎么用,也不会考虑你的代码在这块区域是否会导致内存溢出。
3.Spark Memory.这部分内存就是由Spark管理了。这部分内存大小的计算:(“Java Heap” – “Reserved Memory”) * spark.memory.fraction,而且在spark1.6.0版本默认大小为: (“Java Heap” – 300MB) * 0.75。例如:如果堆内存大小有4G,将有2847MB的Spark Memory,Spark Memory=(4*1024MB-300)*0.75=2847MB。这部分内存会被分成两部分:Storage Memory和Execution Memory,而且这两部分的边界由spark.memory.storageFraction参数设定,默认是0.5即50%。新的内存管理模型中的优点是,这个边界不是固定的,在内存压力下这个边界是可以移动的。如一个区域内存不够用时可以从另一区域借用内存。下边来讨论如何移动及使用的:
1.Storage Memory.这部分内存即可以用来缓存spark数据也可以用来做unroll序列化数据的临时空间。广播变量以block的形式也存储在这里。你奇怪的是unroll,因为你可能会说,并不需要那么多空间去unroll block使其可用——在没有足够内存去unroll bolock的情况下,如果得到持久化级别的允许,将直接在这部分内存unroll block。至于广播变量,当它的持久化级别为MEMORY_AND_DISK时,就会缓存到此。
2.Execution Memory.这部分内存用于存储执行task过程中的一些对象。例如,它可以用来shuflle map端的中间缓存,也可以用来存储hash aggregation过程的hash table.在没有足够内存的时候,这部分内存支持溢室到磁盘,但是这部分内存的blocks不会被其它线程的task挤出去。
下边我们来说一下Storage Memory 和Execution Memory之间的边界移动。从Execution Memory的本质来看,你不能将这部分内存空间的数据挤出去,因为这部分内存的数据是用来计算的中间结果,如果计算过程找不到原来存到这的block数据任务就会失败。但是对于Storage Memory内存就不会这样,它只是用来缓存内存中数据,如果将里边的block数据驱逐出去,就会更新block 元数据映射信息使用到时告知该block被移除了,要想再拿到这些数据从HDD中读取即可(或者如果缓存级别没有溢写就重新计算)。
所以,我们只能Execution Memory可以向Storage Memory挤用空间,反之不可。那么当什么时候会发生Execution Memory 向Storage Memory挤用空间呢?有两种可能:
反过来,在只有当Execution Memory空间有空余时,Storage Memory才可以向Execution Memory借用空间,也就是说Execution Memory只要不够用了就可以向Storage Memory挤占空间不管Storage Memory有没有空余,而Storage Memory只能当Execution Memory有空余时才要以借用不能抢占。
初始Storage Memory 大小:“Spark Memory” * spark.memory.storageFraction = (“Java Heap” – “Reserved Memory”) * spark.memory.fraction * spark.memory.storageFraction。根据默认值,即(“Java Heap” – 300MB) * 0.75 * 0.5 = (“Java Heap” – 300MB) * 0.375. 如果Java Heap=4G,那么就有1423.5MB大小的Storage Memory空间。
这就意味着当我们使用Spark cacheu并加载全部数据到executor中时,至少要将Storage Memory大小等于默认初始值大小。因为当Storage Memory区域还没满时,Execution Memory区域已经膨胀大于其初始设定大小时,我们不能强制将Execution Memory抢占的空间数据驱逐,所以最终Storage Memory会变小。
希望这篇文章可以帮你更好的理解spark新的内存管理机制,并以此来应用。