什么时候需要使用单例模式呢:如果某个类,创建时需要消耗很多资源,即new出这个类的代价很大;或者是这个类占用很多内存,如果创建太多这个类实例会导致内存占用太多。
关于单例模式,虽然很简单,无需过多的解释,但是这里还要提个醒,其实单例模式里面有很多坑。我们去会会单例模式。最简单的单例模式如下:
public class Singleton{
private static Singleton instance;
//将默认的构造函数私有化,防止其他类手动new
private Singleton(){};
public static Singleton getInstance(){
if(instance==null)
instance=new Singleton();
return instatnce;
}
如果是单线程下的系统,这么写肯定没问题。可是如果是多线程环境呢?这代码明显不是线程安全的,存在隐患:某个线程拿到的
instance
可能是
null
,可能你会想,这有什么难得,直接在
getInstance()
函数上加
sychronized
关键字不就好了。可是你想过没有,每次调用
getInstance()
时都要执行同步,这带来没必要的性能上的消耗。注意,在方法上加
sychronized
关键字时,一个线程访问这个方法时,其他线程无法同时访问这个类其他
sychronized
方法。的我们看看另外一种实现:
public class Singleton{
private static Singleton instance;
//将默认的构造函数私有化,防止其他类手动new
private Singleton(){};
public static Singleton getInstance(){
if(instance==null){
sychronized(Singleton.class){
if(instance==null)
instance=new Singleton();
}
}
return instatnce;
}
}
为什么需要2次判断是否为空呢?第一次判断是为了避免不必要的同步,第二次判断是确保在此之前没有其他线程进入到sychronized块创建了新实例。这段代码看上去非常完美,但是,,,
却有隐患!问题出现在哪呢?主要是在
instance=new Singleton();
这段代码上。这段代码会编译成多条指令,大致上做了3件事:
(1)给Singleton实例分配内存
(2)调用Singleton()构造函数,初始化成员字段
(3)将instance对象指向分配的内存(此时instance就不是null啦~)
上面的(2)和(3)的顺序无法得到保证的,也就是说,JVM可能先初始化实例字段再把instance
指向具体的内存实例,也可能先把instance
指向内存实例再对实例进行初始化成员字段。考虑这种情况:一开始,第一个线程执行instance=new Singleton();
这句时,JVM先指向一个堆地址,而此时,又来了一个线程2,它发现instance
不是null
,就直接拿去用了,但是堆里面对单例对象的初始化并没有完成,最终出现错误~ 。
看看另外一种方式:
public class Singleton{
private volatile static Singleton instance;
//将默认的构造函数私有化,防止其他类手动new
private Singleton(){};
public static Singleton getInstance(){
if(instance==null){
sychronized(Singleton.class){
if(instance==null)
instance=new Singleton();
}
}
return instatnce;
}
}
相比前面的代码,这里只是对instance
变量加了一个volatile
关键字volatile
关键字的作用是:线程每次使用到被volatile
关键字修饰的变量时,都会去堆里拿最新的数据。换句话说,就是每次使用instance时,保证了instance是最新的。注意:volatile
关键字并不能解决并发的问题,关于volatile
请查看其它相关文章。但是volatile
能解决我们这里的问题。
那么在安卓中哪些地方用到了单例模式呢?其实,我们在调用系统服务时拿到的Binder对象就是个单例。比如:
//获取WindowManager服务引用
WindowManager wm = (WindowManager)getSystemService(getApplication().WINDOW_SERVICE);
其内部是通过单例的方式返回的,由于单例模式较简单,这里不去深究。
示例:Android中的系统级服务都是通过容器的单例模式实现方式,以单例形式存在,减少了资源消耗。public abstract class Product{
public abstract void method();
}
public class ConcreteProductA extends Prodect{
public void method(){
System.out.println("我是产品A!");
}
}
public class ConcreteProductB extends Prodect{
public void method(){
System.out.println("我是产品B!");
}
}
public abstract class Factory{
public abstract Product createProduct();
}
public class MyFactory extends Factory{
public Product createProduct(){
return new ConcreteProductA();
}
}
看到上面的代码,是不是觉得工厂模式很简单呢?还可以通过传参的方式,让MyFactory的createProduct方法根据传入的参数决定是创建ConcreteProductA还是ConcreteProductB。
同样的,我们不希望记住这个例子,而是通过Android中的代码来记忆:
其实,在getSystemService
方法中就是用到了工厂模式,他就是根据传入的参数决定创建哪个对象,当然了,由于返回的都是以单例模式存在的对象,因此不用new了,直接把单例返回就好。
public Object getSystemService(String name) {
if (getBaseContext() == null) {
throw new IllegalStateException("System services not available to Activities before onCreate()");
}
//........
if (WINDOW_SERVICE.equals(name)) {
return mWindowManager;
} else if (SEARCH_SERVICE.equals(name)) {
ensureSearchManager();
return mSearchManager;
}
//.......
return super.getSystemService(name);
}
public abstract class AbstractProductA{
public abstract void method();
}
public abstract class AbstractProdectB{
public abstract void method();
}
public class ConcreteProductA1 extends AbstractProductA{
public void method(){
System.out.println("具体产品A1的方法!");
}
}
public class ConcreteProductA2 extends AbstractProductA{
public void method(){
System.out.println("具体产品A2的方法!");
}
}
public class ConcreteProductB1 extends AbstractProductB{
public void method(){
System.out.println("具体产品B1的方法!");
}
}
public class ConcreteProductB2 extends AbstractProductB{
public void method(){
System.out.println("具体产品B2的方法!");
}
}
public abstract class AbstractFactory{
public abstract AbstractProductA createProductA();
public abstract AbstractProductB createProductB();
}
public class ConcreteFactory1 extends AbstractFactory{
public AbstractProductA createProductA(){
return new ConcreteProductA1();
}
public AbstractProductB createProductB(){
return new ConcreteProductB1();
}
}
public class ConcreteFactory2 extends AbstractFactory{
public AbstractProductA createProductA(){
return new ConcreteProductA2();
}
public AbstractProductB createProductB(){
return new ConcreteProductB2();
}
}
其实Android源码中对抽象工厂出现的比较少,好在抽象工厂方法并不复杂,很容易记住,我们可以从Service中去理解,Service的onBind方法可以看成是一个工厂方法,从framework角度来看Service,可以看成是一个具体的工厂,这相当于一个抽象工厂方法模式的雏形。
public class BaseService extends Service{
@Nullable
@Override
public IBinder onBind(Intent intent){
return new Binder();
}
}
public class MyData{
private int id;
private String num;
public void Test(){
}
public void setId(int id){
this.id=id;
}
public void setNum(String num){
this.num=num+"id";
}
}
当然了,没有人会这么去写代码。这里只是举例子,或者是有时候很多参数有这种类似的依赖关系时,通过构造函数未免太多参数了。回到主题,就是如果是上面的代码,该怎么办呢?你可能会说,那还不简单,先调用
setId
函数,再调用
setNum
函数。是的,没错。可是,万一你一不小心先调用了
setNum
呢?这是比较简单的示例,如果是比较复杂的,有很多变量之间依赖的关系,那你每次都得小心翼翼的把各个函数的执行步骤写正确。
public class MyBuilder{
private int id;
private String num;
public MyData build(){
MyData d=new MyData();
d.setId(id);
d.setNum(num);
return d;
}
public MyBuilder setId(int id){
this.id=id;
return this;
}
public MyBuilder setNum(String num){
this.num=num;
return this;
}
}
public class Test{
public static void main(String[] args){
MyData d=new MyBuilder().setId(10).setNum("hc").build();
}
}
注意到,Builer
类的setter
函数都会返回自身的引用this
,这主要是用于链式调用,这也是Builder
设计模式中的一个很明显的特征。
Android中用过的代码来记忆
记忆我这个例子没啥意义,我们前面说过,要通过Android中用过的代码来记忆,这样才可以不用死记硬背。那么在Android中哪里用到了Builder设计模式呢?在创建对话框时,是不是跟上面有点类似呢?
AlertDialog.Builer builder=new AlertDialog.Builder(context);
builder.setIcon(R.drawable.icon)
.setTitle("title")
.setMessage("message")
.setPositiveButton("Button1",
new DialogInterface.OnclickListener(){
public void onClick(DialogInterface dialog,int whichButton){
setTitle("click");
}
})
.create()
.show();
其实适配器模式很容易理解,我们在Android开发时也经常用到。比较典型的有ListView和RecyclerView。为什么ListView需要使用适配器呢?主要是,ListView只关心它的每个ItemView,而不关心这个ItemView具体显示的是什么。而我们的数据源存放的是要显示的内容,它保存了每一个ItemView要显示的内容。ListView和数据源之间没有任何关系,这时候,需要通过适配器,适配器提供getView方法给ListView使用,每次ListView只需提供位置信息给getView函数,然后getView函数根据位置信息向数据源获取对应的数据,根据数据返回不同的View。
ListView或GridView的Adapter。
(7)桥接模式:
简介:将抽象部分与它的实现部分分离,使它们都可以独立地变化。
其实就是,一个类存在两个维度的变化,且这两个维度都需要进行扩展。
在Android中桥接模式用的很多,举个例子,对于一个View来说,它有两个维度的变化,一个是它的描述比如Button、TextView等等他们是View的描述维度上的变化,另一个维度就是将View真正绘制到屏幕上,这跟Display、HardwareLayer和Canvas有关。这两个维度可以看成是桥接模式的应用。
怎么理解呢,举个例子,我们在启动计算机时,只需按一下开关键,无需关系里面的磁盘、内存、cpu、电源等等这些如何工作,我们只关心他们帮我启动好了就行。实际上,由于里面的线路太复杂,我们也没办法去具体了解内部电路如何工作。主机提供唯一一个接口“开关键”给用户就好。
那么Android哪里使用到了外观模式呢?依然回到Context,Android内部有很多复杂的功能比如startActivty、sendBroadcast、bindService等等,这些功能内部的实现非常复杂,如果你看了源码你就能感受得到,但是我们无需关心它内部实现了什么,我们只关心它帮我们启动Activity,帮我们发送了一条广播,绑定了Activity等等就够了。
享元模式我们平时接触真的很多,比如Java中的常量池,线程池等。主要是为了重用对象。
在Android哪里用到了享元模式呢?线程通信中的Message,每次我们获取Message时调用Message.obtain()
其实就是从消息池中取出可重复使用的消息,避免产生大量的Message对象。
观察者模式一个比较经典的应用就是:订阅——发布系统。很容易理解,发布消息时,将消息发送给每个订阅者。我们常用的微信公众号就是典型,当我们关注某个公众号时,每当公众号推送消息时,我们就会去接收到消息,当然了,每个订阅(关注)公众号的的人都能接收到公众号推送的消息。
那么Android哪里用到了观察者模式呢?我们看看ListView的适配器,有个函数notifyDataSetChanged()
函数,这个函数其实就是通知ListView的每个Item,数据源发生了变化,请各位Item重新刷新一下。
什么时候用中介者模式呢?其实,中介者对象是将系统从网状结构转为以调停者为中心的星型结构。
举个简单的例子,一台电脑包括:CPU、内存、显卡、IO设备。其实,要启动一台计算机,有了CPU和内存就够了。当然,如果你需要连接显示器显示画面,那就得加显卡,如果你需要存储数据,那就要IO设备,但是这并不是最重要的,它们只是分割开来的普通零件而已,我们需要一样东西把这些零件整合起来,变成一个完整体,这个东西就是主板。主板就是起到中介者的作用,任何两个模块之间的通信都会经过主板协调。
Binder
机制中,就用到了中介者模式,对Binder
不是很熟悉的童鞋请参考《 简单明了,彻底地理解Binder》。我们知道系统启动时,各种系统服务会向ServiceManager
提交注册,即ServiceManager
持有各种系统服务的引用 ,当我们需要获取系统的Service
时,比如ActivityManager
、WindowManager
等(它们都是Binder
),首先是向ServiceManager
查询指定标示符对应的Binder,再由ServiceManager
返回Binder
的引用。并且客户端和服务端之间的通信是通过Binder驱动来实现,这里的ServiceManager
和Binder
驱动就是中介者。访问者模式是23种设计模式中最复杂的一个,但他的使用率并不高,大部分情况下,我们不需要使用访问者模式,少数特定的场景才需要。
Android中运用访问者模式,其实主要是在编译期注解中,编译期注解核心原理依赖APT(Annotation Processing Tools),著名的开源库比如ButterKnife、Dagger、Retrofit都是基于APT。
从定义中看起来比较抽象,其实,很简单,很容易理解!就是相当于自定义一个格式的文件,然后去解析它。不用理解的那么复杂!
我们看看Android中哪里用到了,从我们第一次学Android时就知道,四大组件需要在AndroidManifest.xml
中定义,其实AndroidManifest.xml
就定义了
,
等标签(语句)的属性以及其子标签,规定了具体的使用(语法),通过PackageManagerService(解释器)进行解析。
相信熟悉Java的你肯定知道,Java中就有迭代器Iterator
类,本质上说,它就是用迭代器模式。
按照惯例,看看Android中哪里用到了迭代器模式,Android源码中,最典型的就是Cursor
用到了迭代器模式,当我们使用SQLiteDatabase
的query
方法时,返回的就是Cursor
对象,通过如下方式去遍历:
cursor.moveToFirst();
do{
//cursor.getXXX(int);
}while(cursor.moveToNext);3
举个例子来理解吧,比如,你现在又很多排序算法:冒泡、希尔、归并、选择等等。我们要根据实际情况来选择使用哪种算法,有一种常见的方法是,通过if…else或者case…等条件判断语句来选择。但是这个类的维护成本会变高,维护时也容易发生错误。
如何使用策略模式呢,我不打算写示例代码了,简单描述一下,就将前面说的算法选择进行描述。我们可以定义一个算法抽象类AbstractAlgorithm,这个类定义一个抽象方法sort()。每个具体的排序算法去继承AbstractAlgorithm类并重写sort()实现排序。在需要使用排序的类Client类中,添加一个setAlgorithm(AbstractAlgorithm al);方法将算法设置进去,每次Client需要排序而是就调用al.sort()。
示例:Java.util.List就是定义了一个增(add)、删(remove)、改(set)、查(indexOf)策略,至于实现这个策略的ArrayList、LinkedList等类,只是在具体实现时采用了不同的算法。但因为它们策略一样,不考虑速度的情况下,使用时完全可以互相替换使用。
简介:状态发生改变时,行为改变。
示例:View.onVisibilityChanged方法,就是提供了一个状态模式的实现,允许在View的visibility发生改变时,引
发执行onVisibilityChanged方法中的动作。
(22)命令模式
简介:把请求封装成一个对象发送出去,方便定制、排队、取消。
举个例子来理解:当我们点击“关机”命令,系统会执行一系列操作,比如暂停事件处理、保存系统配置、结束程序进程、调用内核命令关闭计算机等等,这些命令封装从不同的对象,然后放入到队列中一个个去执行,还可以提供撤销操作。
示例:Handler.post后Handler.handleMessage。
(23)享元模式
简介:运用共享技术有效地支持大量细粒度的对象。
享元模式我们平时接触真的很多,比如Java中的常量池,线程池等。主要是为了重用对象。
在Android哪里用到了享元模式呢?线程通信中的Message,每次我们获取Message时调用Message.obtain()
其实就是从消息池中取出可重复使用的消息,避免产生大量的Message对象。
示例:Message.obtainMessage通过重用Message对象来避免大量的Message对象被频繁的创建和销毁。